A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11

Am J Hum Genet. 1992 May;50(5):924-33.

Abstract

DiGeorge syndrome (DGS), a developmental field defect of the third and fourth pharyngeal pouches, is characterized by aplasia or hypoplasia of the thymus and parathyroid glands and by conotruncal cardiac malformations. Cytogenetic studies support the presence of a DGS critical region in band 22q11. In the present study, we report the results of clinical, cytogenetic, and molecular studies of 14 patients with DGS. Chromosome analysis, utilizing high-resolution banding techniques, detected interstitial deletions in five probands and was inconclusive for a deletion in three probands. The remaining six patients had normal karyotypes. In contrast, molecular analysis detected DNA deletions in all 14 probands. Two of 10 loci tested, D22S75 and D22S259, are deleted in all 14 patients. A third locus, D22S66, is deleted in the eight DGS probands tested. Physical mapping using somatic cell hybrids places D22S66 between D22S75 and D22S259, suggesting that it should be deleted in the remaining six cases. Parent-of-origin studies were performed in five families. Four probands failed to inherit a maternal allele, and one failed to inherit a paternal allele. On the basis of these families, and of six maternally and five paternally derived unbalanced-translocation DGS probands in the literature, parent of origin or imprinting does not appear to play an important role in the pathogenesis of DGS. Deletion of the same three loci in all 14 DGS probands begins to delineate the region of chromosome 22 critical for DGS and confirms the hypothesis that submicroscopic deletions of 22q11 are etiologic in the vast majority of cases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blotting, Southern
  • Cell Line
  • Chromosome Deletion*
  • Chromosomes, Human, Pair 22*
  • DNA Probes / genetics
  • DiGeorge Syndrome / genetics*
  • Female
  • Humans
  • Male
  • Polymorphism, Restriction Fragment Length*

Substances

  • DNA Probes