Semin Reprod Med 2000; 18(3): 311-320
DOI: 10.1055/s-2000-12568
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Implantation in the Human: The Role of HOX Genes

Gaurang S. Daftary, Hugh S. Taylor
  • Division of Reproductive Endocrinology, Yale University School of Medicine, New Haven, Connecticut
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

HOX genes are transcription factors that are essential for the proper development of the müllerian tract in the embryonic period. It has been discovered that HOX genes are expressed in the adult uterus. Two of them, Hoxa10 and Hoxa11, have been demonstrated to be necessary for uterine receptivity and implantation in mice. Recent evidence also suggests such a role for HOX genes in humans. They are likely to be essential regulators of endometrial development in preparation for implantation. This article reviews the role of the HOX genes in the reproductive tract, their patterns of expression and regulation, the outcome of deficient HOX gene expression, and their potential mechanisms of action. The process of implantation is complex, and many molecular markers have been found expressed at high levels in the endometrium in the peri-implantation window. Targeted disruption has revealed that most of these molecules are redundant and not essential for implantation. The importance of Hox genes in this process has been well documented, and they remain one of the few well-characterized molecules necessary for implantation.

REFERENCES

  • 1 Welsh A O, Enders A C. Chorioallantoic placenta formation in the rat: I. Luminal epithelial cell death and extracellular matrix modifications in the mesometrial region of implantation chambers.  Am J Anat . 1991;  192 215-231
  • 2 Pollard J W. Lymphohematopoietic cytokines in the female reproductive tract.  Curr Opin Immunol . 1991;  3 772-777
  • 3 Wegmann T G, Guilbert L J. Immune signalling at the maternal fetal interface and trophoblast differentiation.  Dev Comp Immunol . 1992;  16 425-430
  • 4 Wegmann T G. Maternal T-cells promote growth and prevent spontaneous abortion.  Immunol Lett . 1988;  17 297-302
  • 5 Finn C A, Martin L. The control of implantation.  J Reprod Fertil . 1974;  39 195-206
  • 6 Navot D, Laufer N, Kopolovic J. Artificially induced endometrial cycles and establishment of pregnancies in the absence of ovaries.  N Engl J Med . 1986;  314 806-811
  • 7 Lydon J P, DeMayo F J, Funk C R. Mice lacking progesterone receptor exhibit pleiotropic reproductive anomalies.  Genes Dev . 1995;  9 2266-2278
  • 8 McLaren A. A study of blastocysts during delay and subsequent implantation in lactating mice.  J Endocrinol . 1968;  42 453-463
  • 9 Psychoyos A. Endocrine control of egg implantation. In: Greep RO, Astwood EB, eds. Handbook of Physiology Washington, DC: American Physiology Society 1973: 187-215
  • 10 Taylor H, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium.  J Clin Invest . 1998;  101 1379-1384
  • 11 Taylor H, Igarashi P, Olive D, Arici A. Sex steroids mediate HOXA11 expression in human peri-implantation endometrium.  J Clin Endocrinol Metab . 1999;  84 1129-1135
  • 12 Tabibzadeh S. Human endometrium: an active site of cytokine production and action.  Endocr Rev . 1991;  12 272-290
  • 13 Giudice L C. Growth factors and growth modulators in human endometrium: their potential relevance to reproductive medicine.  Fertil Steril . 1194;  61 1-17
  • 14 Simon C, Frances A, Pellicer A, Polan M L. Cytokines in implantation.  Semin Reprod Endocrinol . 1995;  13 142-151
  • 15 Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in Hoxa-10 deficient mice.  Nature . 1995;  374 460-463
  • 16 Hsieh Li M H, Witte D P, Weinstein M. Hoxa11 structure, extensive antisense transcription, and function in male and female infertility.  Development . 1995;  121 373-1385
  • 17 Albelda S M, Buck C A. Integrins and other cell adhesion molecules.  FASEB J . 1990;  4 2868-2880
  • 18 Hynes R O. Integrins: a family of cell surface receptors.  Cell . 1987;  48 549-554
  • 19 Lessey B A, Damjanovich L, Coutifaris C. Integrin adhesion molecules in the human endometrium.  J Clin Invest . 1992;  90 188-195
  • 20 Tabibzadeh S, Sun X Z. Cytokine expression in human endometrium throughout the menstrual cycle.  Hum Reprod . 1992;  7 1214-1221
  • 21 Hodivala-Dilke K M, Kairbaan M, McHugh K P. β3 integrin deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival.  J Clin Invest . 1999;  103 229-238
  • 22 Simon C, Piquette G N, Frances A. The effect of interleukin 1 beta (IL-1β) on the regulation of IL-1 receptor type 1 and IL-1 beta messenger ribonucleic acid (mRNA) levels and protein expression in cultured human endometrial stromal and glandular cells.  J Clin Endocrinol Metab . 1994;  78 675-682
  • 23 Simon C, Piquette G N, Frances A. Localization of interleukin-1 type 1 receptor and interleukin-1 beta in human endometrium throughout the menstrual cycle.  J Clin Endocrinol Metab . 1993;  77 549-555
  • 24 Kauma S, Matt D, Strom S. Interleukin-1 beta, human leukocyte antigen HLA-DR alpha, and transforming growth factor-beta expression in the endometrium, placenta and placental membranes.  Am J Obstet Gynecol . 1990;  163 1430-1437
  • 25 Yamada H, Mizumd S, Horai R. Protective role of interleukin-1 in mycobacterial infection in IL-1[alpha]/[beta] double-knockout mice.  US and Canadian Academy of Pathology . 2000;  80 759-767
  • 26 Tamada H, Das S K, Andrews G K, Dey S K. Cell type-specific expression of transforming growth factor-α in the mouse uterus during the periimplantation period.  Biol Reprod . 1991;  45 365-372
  • 27 Bruce-Mann G, Fowler K J, Gabriel A, Nice E C, Linsay W R, Dunn A R. Mice with a null mutation of the TGF-α gene have abnormal skin architecture, wavy hairs and curly whiskers and often develop corneal inflammation.  Cell . 1993;  73 249-261
  • 28 Bhatt B L, Brunet L J, Stewart C L. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation.  Proc Natl Acad Sci U S A . 1991;  88 11408-11412
  • 29 Stewart C L, Kaspar P, Brunet L J. Blastocyst implantation depends on maternal expression of leukemia inhibitory factor.  Nature . 1992;  359 76-79
  • 30 Arici A, Engin O, Attar E, Olive D. Modulation of leukemia inhibitory factor gene expression and protein biosynthesis in the human endometrium.  J Clin Endocrinol Metab . 1995;  80 1908-1915
  • 31 Charnock-Jones D, Sharkey A, Fenwick P, Smith S. Leukemia inhibitory factor mRNA concentration peaks in human endometrium at the time of implantation and the blastocyst contains mRNA for the receptor at this time.  J Reprod Fertil . 1994;  101 421-426
  • 32 Gendron R L, Paradis H, Hsieh-Li H M, Lee D W, Potter S S, Markoff E. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice.  Biol Reprod . 1997;  56 1097-1105
  • 33 Akam M. Hox and HOM: homologous gene clusters in insects and vertebrates.  Cell . 1989;  57 347-349
  • 34 Boncinelli E, Somma R, Acampora D. Organization of human homeobox genes.  Hum Reprod . 1988;  3 880-886
  • 35 Schughart K, Kappen C, Ruddle F H. Mammalian homeobox containing genes: genome organization, structure, expression and evolution.  Br J Cancer . 1988;  (suppl 9) 9-13
  • 36 Krumlauf R. Hox genes in vertebrate development.  Cell . 1994;  78 191-201
  • 37 Dessain S, Gross C T, Kuziora M A, McGinnis W. Antp-type homeodomains have distinct DNA binding specificities that correlate with their different regulatory functions in embryos.  EMBO J . 1992;  11 991-1002
  • 38 Ekker S C, Jackson D G, von Kessler P D. The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins.  EMBO J . 1994;  13 3551-3560
  • 39 McGinnis W, Krumlauf R. Homeobox genes and axial patterning.  Cell . 1992;  68 283-302
  • 40 Affloter M, Percival-Smith A, Muller M, Leupin W, Gehring W J. DNA binding properties of the purified Antennapedia homeodomain.  Proc Natl Acad Sci U S A . 1990;  87 4093-4097
  • 41 Ekker S C, Young K E, von Kessler P D. Optimal DNA sequence recognition by the ultrabithorax homeodomain of Drosophila EMBO J .  1991;  10 1179-1186
  • 42 Regulski M, Dessain S, McGinnis N, McGinnis W. High affinity binding sites for the Deformed protein are required for the function of an autoregulatory enhancer of the Deformed gene.  Genes Dev . 1991;  5 278-286
  • 43 Graham A, Papalopulu N, Lorimer J. Characterization of a murine homeobox gene, Hox-2.6, related to the Drosophila deformed gene.  Genes Dev . 1988;  2 1424-1438
  • 44 Kappa C, Schughart K, Ruddle F H. Early evolutionary origins of major homeodomain sequence classes.  Genomics . 1993;  18 54-70
  • 45 Lewis E. A gene complex controlling segmentation in Drosophila Nature .  1978;  276 565-570
  • 46 Krumlauf R. Mouse Hox genetic functions.  Curr Opin Genet Dev . 1993;  3 621-625
  • 47 Hunt P, Gulisano M, Cook M. A distinct Hox code for the branchial region of the vertebrate head.  Nature . 1991;  353 861-864
  • 48 McGinnis W, Levine M S, Hafen E. A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes.  Nature . 1984;  308 428-433
  • 49 Balling R, Mutter G, Gruss P, Kessel M. Craniofacial abnormalities induced by ectopic expression of the homeobox gene Hox 1.1 in transgenic mice.  Cell . 1989;  58 337-347
  • 50 Kessel M, Balling R, Gruss P. Variations of cervical vertebrae after expression of a Hox-1.1 transgene in mice.  Cell . 1990;  61 301-308
  • 51 Chisaka O, Capecchi M R. Regionally restricted developmental defects resulting from the targeted disruption of the mouse homeobox gene Hox-1.5 Nature .  1991;  350 473-479
  • 52 Lufkin T, Dierich A, LeMeur M. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression.  Cell . 1991;  66 1105-1119
  • 53 Lufkin T, Mark M, Hart C P. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene.  Nature . 1992;  859 835-841
  • 54 Morgan G A, Izpisua B J, Doboule D, Tabin C J. Targeted misexpression of Hox-6.1 in the avian limb bud causes apparent homeotic transformations.  Nature . 1992;  359 835-841
  • 55 Chisaka O, Musci T S, Capecchi M R. Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6 Nature .  1992;  355 516-520
  • 56 Gaunt S J, Krumlauf R, Duboule D. Mouse homeobox genes within a subfamily, Hox -1.4, 2.6, 5.1 display similar antero-posterior domains of expression in the embryo, but show stage- and tissue-dependent differences in their regulation.  Development . 1989;  107 31-141
  • 57 Favier P, Dolle B. Developmental functions of mammalian Hox genes.  Mol Hum Reprod . 1997;  3 115-131
  • 58 Davis A P, Witte D P, Hsieh Li M H. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11.  Nature . 1995;  375 791-795
  • 59 Horan G S, Ramirez Solis R, Featherstome M S. Compound mutants for the paralogous hoxa-4, hoxb-4 and hoxd-4 genes show more complete homeotic transformations and a dose dependent increase in the number of vertebrae transformed.  Genes Dev . 1995;  9 1667-1677
  • 60 Zakany J, Gerard M, Favier B. Functional significance and rescue among group 11 Hox gene products in vertebral patterning.  Dev Biol . 1996;  176 325-328
  • 61 Chen F, Capecchi M R. Targeted mutations in hoxa-9 and hoxb-9 reveal synergistic interactions.  Dev Biol . 1997;  181 186-196
  • 62 Manley N R, Capecchi M R. Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest derived structures.  Dev Biol . 1997;  192 274-288
  • 63 Rijli F M, Chambon P. Genetic interactions of Hox genes in limb development: learning from compound mutants.  Curr Opin Genet Dev . 1997;  7 481-487
  • 64 Gavalas A, Studer M, Lumsden A. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch.  Development . 1998;  125 1123-1136
  • 65 Taylor H, Vanden Heuvel G, Igarashi P. A conserved Hox axis in the mouse and human reproductive system: late establishment and persistent expression of the Hoxa cluster genes.  Biol Reprod . 1997;  57 1338-1345
  • 66 Dolle P, Izpisua-Belmonte J, Ticlele C, Duboule D. Hox-4 genes and morphogenesis of mammalian genitalia.  Genes Dev . 1991;  5 1767-1776
  • 67 Benson G V, Lim H, Parai B C. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression.  Development . 1996;  58 337-347
  • 68 Chen F, Capecchi M R. Paralogous mouse Hox genes, Hoxa9, Hoxb9 and Hoxd9 function together to control development of the mammary gland in response to pregnancy.  Proc Natl Acad Sci U S A . 1999;  96 541-546
  • 69 Care A, Testa U, Bassani A. Coordinate expression and proliferative role of HOXB genes in activated adult T lymphocytes.  Mol Cell Biol . 1994;  14 4872-4877
  • 70 Warot X, Fromental Ramain C, Fraulob V. Gene dosage-dependent effects of the Hoxa13 and Hoxd13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts.  Development . 1997;  124 4781-4791
  • 71 Block K, Kardana A, Igarashi P, Taylor H S. In utero DES exposure alters HOX gene expression in the developing mouse müllerian system.  FASEB J . 2000;  14 1101-1108
  • 72 DeCherney A H, Cholst I, Naftolin F. Structure and function of the fallopian tube following exposure to DES during gestation.  Fertil Steril . 1981;  36 741-745
  • 73 Ma L, Lim H, Dey S K, Maas R L. Abdominal B (AbdB) Hoxa genes: regulation in the adult uterus by estrogen and progesterone and repression in the müllerian duct by the synthetic estrogen diethylstilbestrol.  Dev Biol . 1998;  197 141-154
  • 74 Bagot C N, Troy P J, Taylor H S. Alteration of maternal Hoxa10 expression by in vivo gene transfection affects implantation.  Gene Ther . 2000;  7 1378-1384
  • 75 Taylor H S, Chung H, Pando S. The endocrine disruptors DES and methoxychlor alter HOXA10 expression by disrupting binding of ER to the 5′ HOXA10 ERE.  J Soc Gynecol Investig . 2000;  Abstract 176 92A
  • 76 Troy P J, Bagot C, Taylor H S. EMX2 is negatively regulated by HOXA10.  J Soc Gynecol Investig . 2000;  7(suppl) 176
  • 77 Cohen S, Jurgens G. Mediation of Drosophila head development by gap-like segmentation genes.  Nature . 1990;  346 482-485
  • 78 Hirth F, Theirianos S, Loop T. Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila Neuron .  1995;  154 769-778
  • 79 Walldorf U, Gehring W. Empty Spiracles, a gap gene containing a homeobox involved in Drosophila head development.  EMBO J . 1992;  11 2247-2259
  • 80 Jones B, McGinnis W. The regulation of Empty Spiracles by Abdominal B mediates an abdominal segment identity function.  Genes Dev . 1993;  7 229-240
  • 81 Kastury K, Druck T, Huebner K. Chromosomal locations of EMX and OTX genes.  Genomics . 1994;  22 41-45
  • 82 Simeone A, Acampora D, Gulisand M. Nested expression domains of four homeobox genes in developing rostral brain.  Nature . 1992;  358 687-690
  • 83 Pellegrini M, Mansouri A, Simeone A, Bocinelli E, Gruss P. Dentate gyrus formation requires Emx2.  Development . 1996;  2 335-345
  • 84 Awgulewitsch A, Jacobs D. Deformed autoregulatory element from Drosophila functions in a conserved manner in transgenic mice.  Nature . 1992;  358 341-344
  • 85 McGinnis W, Kuziora M, Regulski M, McGinnis W. Human HOX-4.2 and Drosophila deformed encode similar regulatory specificities in Drosophila embryos and larvae.  Cell . 1990;  63 969-976
  • 86 Malicki J, Schughart K, McGinnis W. Mouse Hox 2.2 specifies thoracic segmental identity in Drosophila embryos and larvae.  Cell . 1990;  63 961-967
  • 87 Taylor H S. A regulatory element of the Empty Spiracles homeobox gene is composed of three distinct conserved regions that bind regulatory proteins.  Mol Reprod Dev . 1998;  49 246-253
  • 88 Taylor H S, Bagot C, Kardana A. Hox gene expression is altered in the endometrium of women with endometriosis.  Hum Reprod . 1999;  14 1328-1331
  • 89 Taylor H S. The role of HOX genes in human implantation.  Hum Repro Update . 2000;  6 75-79
    >