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ABSTRACT

Background: Cardiac surgery is resource intensive and often requires considerable length of 

stay (LOS). To facilitate evidence-based resource planning, we derived and validated a set of 

clinical models to predict postoperative hospital LOS.

Methods: We used linked, population-level databases with information on all Ontario residents. 

Included were patients ≥18 years of age who underwent coronary artery bypass grafting, 

valvular, or thoracic aorta surgeries between October 2008 and September 2019. The primary 

outcome was hospital LOS. The models were derived on patients who had surgery before 

September 30, 2016 and validated on those after that date. To address the rightward skew in LOS 

data and to identify top-tier resource users, we used logistic regression to derive a model to 

predict the likelihood of LOS being >98th percentile (≥35 days). We then used gamma regression 

in the remainder to predict the actual LOS in days. We used backward stepwise variable 

selection for both models.

Results: Among 105,193 patients, 2,422 (2.3%) had LOS of ≥35 days. The median LOS was 46 

(IQR, 37-66) days for those with LOS in the top 2 percentiles and 6 (5-8) days for those without. 

The c-statistic was 0.92 for the prolonged LOS model and the mean absolute error was 2.4 days 

for the model that predicted actual LOS.

Interpretation: We derived and validated a set of clinical models to identify top-tier resource 

users and predict actual LOS with excellent accuracy. Our models could be used to benchmark 

quality, rationally allocate resources and support patient-centered operative decision-making.

Key Words: cardiac surgery, length of stay, hospitalization, access to care, capacity planning, 

patient-centered research
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INTRODUCTION

Around the world, approximately 2 million cardiac surgeries are performed each year.1,2 Cardiac 

surgery is resource intensive. It carries a higher burden of complications, requires intensive 

postoperative monitoring, and often longer hospital length of stay (LOS) as compared to 

noncardiac surgery3. With steady improvements in surgical technique and perioperative care, 

cardiac surgery is increasingly being offered to frail and complex patients with higher resource 

needs4,5. Organizations’ drive for operational efficiency and competing capacity needs in the era 

of COVID-19 makes evidence-based triaging and resource allocation, founded on real-world 

data, an urgent priority. Prediction of intensive care unit (ICU) LOS after cardiac surgery6–8 is 

important but does not fully reflect the extent of resources needed. Nonetheless, few models are 

available to predict postoperative LOS in hospital. Although existing models include those from 

the Society of Thoracic Surgeons (STS) and the EuroSCORE datasets 9–11, they were developed 

to predict perioperative mortality and end organ morbidity and were only later validated in single 

center datasets for the purpose of predicting prolonged LOS. To better inform health resource 

planning, we derived and externally validated clinical models using population-based data to 

identify top-tier resource users and to predict actual hospital LOS after cardiac surgery. 
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METHODS

The dataset from this study is held securely in coded form at ICES (formerly the Institute for 

Clinical Evaluative Sciences). The use of data was authorized under section 45 of Ontario’s 

Personal Health Information Protection Act, which does not require review by a research ethics 

board.12

Design and Population

We conducted a population-based, retrospective cohort study of adult patients ≥ 18 years of age, 

who underwent coronary artery bypass grafting (CABG), aortic, mitral or tricuspid valve, or 

thoracic aorta surgery in Ontario, Canada between October 1, 2008 and September 30, 2019. For 

patients with multiple cardiac procedures during the study period, only the index procedure was 

included in the analyses. Ontario is the most populous province in Canada, with about 14.6 

million residents and is ethnically diverse1,3.

Data Source

We used the clinical registry of CorHealth Ontario and population-level administrative 

healthcare databases from ICES. ICES is an independent, non-profit research institute whose 

legal status under Ontario’s health information privacy law allows it to collect and analyze health 

care and demographic data, without consent, for health system evaluation and improvement. 

Datasets were linked deterministically using confidential identifiers and analyzed at ICES. ICES 

holds multiple population-based health databases of Ontario residents. CorHealth Ontario 
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maintains a prospective registry of all patients who undergo invasive cardiac procedures in 

Ontario and regularly undergoes selected chart audits and core laboratory validation.12

We linked the CorHealth Ontario registry (patient and procedural details) with the Canadian 

Institute for Health Information Discharge Abstract Database (comorbidities, hospital admissions 

and in-hospital procedures), the Ontario Health Insurance Plan database (physician service 

claims) and the Registered Persons Database (vital statistics). These administrative databases 

have been validated for many outcomes, exposures, and comorbidities, including heart failure, 

chronic obstructive pulmonary disease, asthma, hypertension, and diabetes.14–17 

Potential covariates considered in the analyses are described in Table 1 and included 

demographic, physiological, anatomical and comorbidity data, as well as procedure-specific 

information (operative priority status, redo sternotomy, type of surgery, and surgery duration). 

We obtained data on height, weight, operative priority, and information pertaining to LVEF, 

valvular disease and coronary anatomy from the CorHealth Ontario registry.  In addition, we 

identified comorbidities from the CorHealth Ontario registry which we supplemented with data 

from the Discharge Abstract Database and the Ontario Health Insurance Plan database using 

International Classification of Diseases 10th Revision (ICD-10-CA) codes18 within five years 

prior to surgery, according to validated algorithms.14,16,19,20

Outcome

The primary outcome was hospital LOS. As LOS data is invariably right-skewed with extreme 

values in those with prolonged stay,21,22 we derived two separate models: the first (binary 

outcome model) to identify the top-tier resource users (i.e., LOS exceeding the 98th percentile 
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value of ≥ 35 days), and the other (continuous outcome model) to predict the actual LOS in days 

in the remainder of the cohort.

Statistical Analysis 

We compared continuous variables using a 2-sample t-test or Wilcoxon rank sum test where 

appropriate, and categorical variables using a chi-square test.

Missing Data

Left ventricular ejection fraction (LVEF) was missing in 3 582 (3.4%), rurality status in 87 

(0.08%), income quintile in 272 (0.26%), GFR in 4 671 (4.4%), BMI in 5 583 (5.3%), surgery 

duration in 1 317 (1.2%) and operative priority 12 060 (11.5%) patients. We imputed these 

missing values once within the SAS “proc MI” framework, where they were predicted drawing 

on all candidate covariates using predictive mean matching for continuous variables and logistic 

regression for categorical variables.23

Model Development and Validation

We split the cohort temporally into a derivation and validation datasets, such that the cohort who 

underwent cardiac surgery before September 30, 2016 was used to derive the models and the 

remainder of the cohort was used to externally validate these models. We predicted prolonged 

hospital LOS using logistic regression and actual hospital LOS using gamma regression. For 

each of the models, we selected predictor variables using a backward stepwise algorithm with a 

significance threshold of P < 0.1 for entry and P < 0.05 for retention in the model.24 For 

continuous variables, we examined their association with the outcome using cubic splines. Most 

of these variables were entered into the models as continuous values, while body mass index 

(BMI) violated the linearity assumption and was entered as a spline term.
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Model Evaluation

The discrimination of the binary outcome model was evaluated using the c-statistic and its 

calibration was assessed using the Brier score,25 as well as plots of observed versus predicted rates 

within deciles of predicted risk in the validation cohort. The performance of the continuous 

outcome model was assessed using the mean absolute error (MAE), as well as plots of mean 

observed versus predicted LOS in days within each decile of observed LOS in the validation 

cohort.

We performed the analysis using SAS 9.4 (SAS Institute, Cary, NC) and defined statistical 

significance by a two-sided P-value of < 0.05.

RESULTS

Patient Characteristics

Among 105 193 patients, 2 422 (2.3%) had prolonged hospital LOS of ≥ 35 days. The median 

LOS was 46 (IQR, 37-66) days for those with prolonged LOS and 6 (5-8) for the remainder of 

the cohort. Patient characteristics were notably different between groups (Table 1). Patients with 

prolonged hospital LOS were older, more frail, and more likely to be female, have lower income 

levels and to present urgently and emergently for complex procedures (CABG + valve(s), 
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multiple valves and thoracic aorta surgery) at teaching hospitals. They are also more likely to 

have a higher multimorbidity burden, reduced LVEF, and longer surgical durations.

Predictors of Length of Stay

The binary model for prolonged LOS consisted of 16 variables (Table 2) and the continuous 

model consisted of 28 variables (Table 3). The characteristics common to both models are 

procedure type and duration, age, rural residence, BMI, frailty, Canadian Cardiovascular Society 

and New York Heart Association classification status, LVEF, glomerular filtration rate, valvular 

disease, diabetes requiring treatment, anemia, cerebrovascular disease, malignancy, and 

depression. The continuous outcome model additionally included sex, presenting at a community 

hospital, operative priority, atrial fibrillation, endocarditis, peripheral arterial disease, COPD, 

pulmonary circulatory disease, alcoholism, dementia, and psychosis.

Model Performance

Binary outcome model
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The c-statistic was 0.92 in both derivation and validation datasets, demonstrating excellent 

discrimination. The model was well calibrated, with a Brier score of 0.016 and the observed and 

predicted risks of prolonged LOS being very similar across all probability deciles in the 

calibration dataset (Figure 1).

Continuous outcome model

The continuous model had a MAE of 2.3 days in the derivation dataset. The MAE was 2.4 in the 

validation dataset, indicating good predictive accuracy. The calibration plot in Figure 2 shows 

that the mean observed and predicted hospital LOS within each LOS decile were nearly identical 

in the validation cohort.

INTERPRETATION

Operative decision-making may be enhanced by objective tools to more efficiently allocate 

resources in a patient-centered manner. Traditional statistical models are dated; they are limited 

to the prediction of prolonged LOS of varying durations and fail to predict actual LOS26–29. 

While the latter is beginning to be explored using machine learning techniques in isolated CABG 

patients, it is based on small, single-center datasets and lack generalizability in the broader 
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healthcare setting30,31. Our models were pragmatically designed for operational capacity planning 

and were derived and validated in a large and representative population to overcomes these 

limitations. In this population, the risk-adjusted average hospital LOS for the 2011 – 2016 fiscal 

years were reported as 7.85 days for isolated CABG, 9.26 days for isolated AVR, and 12.07 days 

for CABG/AVR32. Of note, this report had trimmed hospital LOS at the 99th percentile to remove 

extreme observations, much like the methodology employed in our analysis to isolate top-tier 

resource users who are at the highest risk of complications, worsening frailty, functional decline 

and loss of personal freedom and independence after surgery12,33–37. The ability to identify those 

at risk for extremely prolonged LOS allows for better decision-making from the perspectives of 

the healthcare system as well as the individual patient. As the system level, this ability, coupled 

with actual LOS prediction, will facilitate data-driven clinical scheduling to increase throughput, 

facilitate targeted interventions such as prehabilitation, Enhanced Recovery After Surgery, and 

early referral to continuing care facilities. As prolonged LOS has also been implicated with 

increased healthcare cost9 and disability after discharge,12,35,36,38,39 our predictive models will 

inform effective provider-patient discussions and encourage patient-centered operative decision-

making.
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Notably, our binary outcome model demonstrated excellent performance with a c-statistic of 0.92 

and outperforms existing models. Comparatively, the EuroScore had a c-statistic of 0.71 (0.69-

0.72) for predicting prolonged hospital LOS (> 12 days) when validated in a monocentric 

setting11, and the STS model had a c-statistic of 0.716-0.732 for predicting short hospital LOS of 

≤ 5 days and 0.739-0.796 for predicting prolonged stay of > 5 days, depending on the type of 

surgery performed.40 It should also be noted that these models rely on designated staff for data 

collection, which constitutes further healthcare resource demands and is not feasible at all 

centers. 

Our continuous outcome model was able to predict LOS with an error margin of 2 days, which is 

accepted in a publicly funded healthcare ecosystem given LOS could be influenced by the 

availability of post-discharge continuing care facilities and home-based caregivers rather than 

medical indications alone. Importantly, our ability to predict actual LOS enables precision-based 

hospital capacity planning, as well as quality benchmarking and incentivized allocation of 

healthcare funding. Incorporation of the model into tools such as the province-wide CorHealth 
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information system could also help individual providers to understand bed requirements at the 

time of intervention, allowing for more accurate resource planning.

Many risk factors from our LOS models are consistent with those published in the literature9,41.  

We were additionally able to incorporate frailty as a defining element of perioperative outcomes 

and recovery42,43, as well as anemia, dementia, psychosis, hospital type, and a variety of 

sociodemographic factors to ensure that all patient groups are equally represented. The variables 

included in our models are routinely collected and readily available to facilitate their adoption at 

most institutions.

Strengths and Limitations

Notable strengths of our models include their generalizability across the scope of cardiac surgery 

in a large and representative population, as well as their relevance to clinicians, policy makers 

and patients. Limitations include the lack of certain detailed physiologic measures such as the 

brain natriuretic peptide in the databases used, as well as their limited application in those who 

undergo minimally invasive cardiac procedures.
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CONCLUSIONS

We derived and validated a set of clinical prediction models to identify top-tier resource users 

(hospital LOS ≥ 35 days) and actual LOS after cardiac surgery with excellent accuracy. The 

importance of these models lies in their potential to support medical resource planning and 

patient-centered decision-making. Care, outcomes, and patient satisfaction may be substantially 

improved if clinical judgment is supported by objective quantification in the planning of care. 

Being based on an unbiased population-based sample, these models could be combined with 

established ICU LOS7 and waitlist44 management tools to provide evidence-based triaging 

decision support, to conserve system capacity, enhance operational efficiency, as well as to 

benchmark performance. 
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FIGURE LEGENDS

Figure 1. Calibration plot of observed vs. predicted risk of extremely prolonged postoperative 

hospital length of stay of ≥ 35 days, according to deciles of expected rate.

Figure 2. Calibration plot of observed vs. predicted average lengths of hospital stay in days, 

within each decile of expected length of stay.
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TABLES

Table 1. Baseline characteristics of patients by length of hospital stay.

 Length of stay <35 d Length of stay ≥35 d P -Value

Demographics

Age, Mean +/- SD, y 66.26 (10.76) 70.64 (11.34) <0.001

Age, Median (IQR), y 67 (59-74) 73 (64-79) <0.001

Female sex, n (%) 25 151 (24.5%) 832 (34.4%) <0.001

BMI, Mean +/- SD, kg/m2 28.85 (5.74) 29.25 (6.81) 0.001

BMI, Median (IQR), kg/m2 28 (25-32) 28 (25-33) 0.504

Rural residence, n (%) 15 853 (15.4%) 318 (13.1%) 0.002

Hospital type, n (%) <0.001

   Community 29 328 (28.5%) 553 (22.8%)

   Teaching 73 443 (71.5%) 1 869 (77.2%)

Income Quintile <0.001

  1 (lowest) 19 540 (19.0%) 564 (23.3%)

   2 20 992 (20.4%) 546 (22.5%)

   3 21 122 (20.6%) 487 (20.1%)

   4 20 754 (20.2%) 446 (18.4%)

   5 (highest) 20 363 (19.8%) 379 (15.6%)

Comorbidities  

Hypertension, n (%) 87 359 (85.0%) 2 188 (90.3%) <0.001

Atrial fibrillation, n (%) 6 905 (6.7%) 397 (16.4%) <0.001

Recent MI. n (%) 23 547 (22.9%) 637 (26.3%) <0.001

CCS classification, n (%) <0.001

   0 21 997 (21.4%) 703 (29.0%)

   1 9 733 (9.5%) 183 (7.6%)

   2 17 026 (16.6%) 164 (6.8%)

   3 15 106 (14.7%) 246 (10.2%)

   4 3 584 (3.5%) 99 (4.1%)

   Low-risk ACS 15 530 (15.1%) 265 (10.9%)

   Intermediate-risk ACS 13 343 (13.0%) 331 (13.7%)

   High-risk ACS 3 883 (3.8%) 155 (6.4%)

   Emergent 2 569 (2.5%) 276 (11.4%)
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Left ventricular ejection fraction, n 

(%) <0.001

   ≥ 50% 72 714 (70.8%) 1 464 (60.4%)

   35-49% 20 860 (20.3%) 552 (22.8%)

   20-35% 7 847 (7.6%) 321 (13.3%)

   <20% 1 350 (1.3%) 85 (3.5%)

NYHA classification, n (%) <0.001

   1 72 445 (70.5%) 1 273 (52.6%)

   2 15 396 (15.0%) 350 (14.5%)

   3 12 153 (11.8%) 532 (22.0%)

   4 2 777 (2.7%) 267 (11.0%)

Heart failure, n (%) 26 585 (25.9%) 1 455 (60.1%) <0.001

Valve disease, n (%) 29 813 (29.0%) 1 184 (48.9%) <0.001

Endocarditis, n (%) <0.001

   None 101 436 (98.7%) 2 293 (94.7%)

   Acute 938 (0.9%) 112 (4.6%)

   Subacute 397 (0.4%) 17 (0.7%)

Cerebrovascular disease, n (%) 9 948 (9.7%) 385 (15.9%) <0.001

Peripheral arterial disease, n (%) 13 647 (13.3%) 502 (20.7%) <0.001

Smoking status, n (%) <0.001

   None 47 527 (46.2%) 1 185 (48.9%)

   Current 19 889 (19.4%) 459 (19.0%)

   Former 35 355 (34.4%) 778 (32.1%)

COPD, n (%) 23 756 (23.1%) 833 (34.4%) <0.001

Diabetes, n (%) 29 816 (29.0%) 833 (34.4%) <0.001

GFR, Mean +/- SD, ml/min/1.73m2 74.05 (21.42) 58.78 (25.42) <0.001

GFR, Median (IQR), ml/min/1.73m2 77 (61-90) 58 (41-79) <0.001

Dialysis, n (%) 2 070 (2.0%) 196 (8.1%) <0.001

Anemia, n (%) 10 170 (9.9%) 714 (29.5%) <0.001

Liver disease, n (%) 977 (1.0%) 58 (2.4%) <0.001

Dementia, n (%) 1 296 (1.3%) 86 (3.6%) <0.001

Depression, n (%) 1 359 (1.3%) 132 (5.5%) <0.001

Psychosis, n (%) 205 (0.2%) 9 (0.4%) 0.0631

Malignancy, n (%) 5 207 (5.1%) 174 (7.2%) <0.001

Paraplegia, n (%) 294 (0.3%) 22 (0.9%) <0.001

Pulmonary circulatory disease, n (%) 2 279 (2.2%) 181 (7.5%) <0.001

Hospital frailty risk score * <0.001
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   High-risk, n (%) 1 166 (1.1%) 557 (23.0%)

   Intermediate-risk, n (%) 16 474 (16.0%) 1 511 (62.4%)

   Low-risk, n (%) 85 131 (82.8%) 354 (14.6%)

Operative characteristics

Surgery type, n (%) <0.001

   CABG 67 703 (65.9%) 839 (34.6%)

   Single valve 14 964 (14.6%) 383 (15.8%)

   Multiple valves 1 745 (1.7%) 118 (4.9%)

   CABG + single valve 10 034 (9.8%) 463 (19.1%)

   CABG + multiple valves 690 (0.7%) 70 (2.9%)

   Thoracic aorta 7 635 (7.4%) 549 (22.7%)

Redo-sternotomy, n (%) 2 800 (2.7%) 148 (6.1%) <0.001

Cardiogenic shock, n (%) 427 (0.4%) 46 (1.9%) <0.001

Operative priority, n (%) <0.001

   Emergent 5,379 (5.2%) 392 (16.2%)

   Urgent 31 487 (30.6%) 1 074 (44.3%)

   Semi-urgent 26 072 (25.4%) 397 (16.4%)

   Elective 39 833 (38.8%) 559 (23.1%)

Surgery duration, mean (SD), min 279.59 (80.67) 350.27 (126.11) <0.001

Surgery duration, median (IQR), min 268 (225-319) 327 (265-403) <0.001

Post-operative characteristics  

Length of stay, mean (SD), d 7.47 (4.19) 58.02 (36.35) <0.001

Length of stay, IQR (SD), d 6 (5-8) 46 (37-66) <0.001

Abbreviations: SD = standard deviation; IQR = interquartile range; BMI = body mass index; MI = myocardial infarction; CCS = 

Canadian Cardiovascular Society; ACS = acute coronary syndrome; LVEF = left ventricular ejection fraction; NYHA = New 

York Heart Association; COPD = chronic obstructive pulmonary disease; GFR = glomerular filtration rate; CABG = coronary 

artery bypass grafting.

* Gilbert et al. (2018)
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Table 2. Multivariable predictors of prolonged hospital length of stay of ≥ 35 days.

Variable β-coefficient Adjusted Odds Ratio (95% CI) P Value

Demographics

Age 0.0205 1.02 (1.02-1.03) <0.001

BMI, per 1 kg/m2 -0.0380 0.96 (0.94-0.98) 0.0005

Rural -0.1848 0.83 (0.71-0.97) 0.0166

Co-morbidities

CCS classification

   0 N/A Reference N/A

   1 -0.1967 0.82 (0.67-1.01) 0.0603

   2 -0.3822 0.68 (0.55-0.85) 0.0006

   3 0.0114 1.01 (0.84-1.22) 0.9064

   4 0.1511 1.16 (0.89-1.53) 0.2751

   Low risk ACS -0.2074 0.81 (0.67-0.99) 0.0357

   Intermediate risk ACS -0.0392 0.96 (0.8-1.16) 0.6854

   High risk ACS 0.4073 1.50 (1.18-1.91) 0.0009

   Emergent 0.803 2.23 (1.79-2.78) <.0001

LVEF

   ≥ 50% N/A Reference N/A

   35-49% 0.1052 1.11 (0.98-1.26) 0.1093

   20-35% 0.0506 1.05 (0.89-1.24) 0.5551

   <20% 0.5591 1.75 (1.31-2.34) 0.0002

Heart failure 0.3731 1.45 (1.29-1.64) <0.001

CVD -0.2409 0.79 (0.68-0.91) 0.0009

Diabetes (treated) 0.1497 1.16 (1.04-1.3) 0.0105

eGFR -0.00390 1.00 (0.99-1.00) 0.0007

Anemia -0.2997 0.74 (0.65-0.84) <0.001

Depression 0.3184 1.37 (1.08-1.75) 0.0100

Malignancy -0.2093 0.81 (0.66-0.99) 0.0399

Valvular disease -0.2247 0.80 (0.68-0.94) 0.0078

Hospital frailty risk score *

   High-risk 4.2723 71.69 (59.01-87.09) <0.001

   Intermediate-risk 2.6876 14.70 (12.75-16.94) <0.001

   Low-risk N/A Reference N/A

Operative Characteristics

Surgery type

   CABG N/A Reference N/A
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   Single valve 0.7583 2.13 (1.71-2.66) <0.001

   Multivalve 0.8855 2.42 (1.77-3.33) <0.001

   CABG + single valve 0.6876 1.99 (1.63-2.43) <0.001

   CABG + multivalve 1.0779 2.94 (2.06-4.19) <0.001

   Thoracic aorta 0.9391 2.56 (2.14-3.06) <0.001

Surgery duration, per 10 min 0.00393 1.040 (1.035-1.045) <0.001

Abbreviations: BMI = body mass index; CCS = Canadian Cardiovascular Society; LVEF = left ventricular ejection fraction; 

CVD = cerebrovascular disease; e GFR = estimated glomerular filtration rate; CABG = coronary artery bypass grafting. 

* Gilbert et al. (2018) 
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Table 3. Multivariable predictors of a continuous model describing actual hospital length of stay 

in days.

Variable β-coefficient Rate Ratio (95% CI) P Value

Demographics

Age 0.007500 1.01 (1.01-1.01) <0.001

Sex, female 0.077071 1.08 (1.07-1.09) <0.001

BMI, per 1 kg/m2 -0.006353 0.994 (0.993-0.995) <0.001

Rural -0.038102 0.96 (0.96-0.97) <0.001

Community hospital 0.032697 1.03 (1.03-1.04) <0.001

Co-morbidities

Atrial fibrillation 0.023919 1.02 (1.01-1.04) <0.001

CCS

   0 N/A Reference N/A

   1 -0.013390 0.99 (0.98-1.00) 0.0185

   2 -0.011821 0.99 (0.98-1.00) 0.0228

   3 0.007720 1.01 (1.00-1.02) 0.1461

   4 0.023578 1.02 (1.01-1.04) 0.0061

   Low risk ACS 0.004400 1.00 (0.99-1.02) 0.4320

   Intermediate risk ACS 0.039144 1.04 (1.03-1.05) <.001

   High risk ACS 0.038623 1.04 (1.02-1.06) 0.0013

   Emergent 0.135774 1.15 (1.12-1.18) <.001

LVEF

   ≥ 50% N/A Reference N/A

   35-49% 0.014921 1.02 (1.01-1.02) <0.001

   20-35% 0.045719 1.05 (1.04-1.06) <0.001

   <20% 0.115012 1.12 (1.10-1.15) <0.001

NHYA class

   1 N/A Reference N/A

   2 0.011695 1.01 (1.00-1.02) 0.0111

   3 0.026415 1.03 (1.02-1.04) <0.001

   4 0.060932 1.06 (1.04-1.08) <0.001

Heart Failure 0.072425 1.08 (1.07-1.08) <0.001

Endocarditis

   Acute 0.199950 1.22 (1.18-1.26) <0.001

   Subacute 0.025726 1.03 (0.98-1.07) 0.2623

CVD 0.027025 1.03 (1.02-1.04) <0.001
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PAD 0.018385 1.02 (1.01-1.03) <0.001

COPD 0.037918 1.04 (1.03-1.05) <0.001

Diabetes (treated) 0.031403 1.03 (1.03-1.04) <0.001

eGFR -0.001126 1.00 (1.00-1.00) <0.001

Anemia 0.028545 1.03 (1.02-1.04) <0.001

Alcohol use 0.033998 1.03 (1.01-1.06) 0.0041

Dementia 0.046793 1.05 (1.02-1.07) 0.0002

Depression 0.079752 1.08 (1.06-1.11) <0.001

Psychosis 0.134990 1.14 (1.08-1.21) <0.001

Pulmonary circulatory disease 0.078703 1.08 (1.06-1.10) <0.001

Valvular disease -0.014392 0.99 (0.98-1.00) 0.0082

Hospital frailty risk score *

   High-risk 0.510984 1.67 (1.62-1.71) <0.001

   Intermediate-risk 0.340613 1.41 (1.39-1.42) <0.001

   Low-risk N/A Reference N/A

Operative Characteristics

Surgery type

   CABG N/A Reference N/A

   Single valve 0.125445 1.13 (1.12-1.15) <0.001

   Multiple valves 0.224929 1.25 (1.22-1.28) <0.001

   CABG + Valve 0.131862 1.14 (1.13-1.16) <0.001

   CABG + Multivalve 0.174254 1.19 (1.15-1.23) <0.001

   Thoracic aorta 0.141773 1.15 (1.14-1.17) <0.001

Redo sternotomy -0.031499 0.97 (0.95-0.98) <0.001

Surgery duration, per 10 min 0.000996 1.010 (1.0096-1.0104) <0.001

Surgical priority

   Emergent 0.047870 1.05 (1.03-1.07) <0.001

   Urgent 0.002829 1.00 (0.99-1.01) 0.5711

   Semi-urgent 0.004538 1.00 (1.00-1.01) 0.2277

   Elective N/A Reference N/A

Abbreviations: BMI = body mass index; CCS = Canadian Cardiovascular Society; LVEF = left ventricular ejection fraction; 

NYHA = New York Heart Association; CVD = cerebrovascular disease; PAD = peripheral arterial disease; COPD = chronic 

obstructive pulmonary disease; eGFR = estimated glomerular filtration rate; CABG = coronary artery bypass grafting.

* Gilbert et al. (2018) 
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FIGURES

Figure 1. Calibration plot of observed vs. predicted risk of extremely prolonged postoperative 

hospital length of stay of ≥ 35 days, according to deciles of expected rate.
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Figure 2. Calibration plot of observed vs. predicted average lengths of hospital stay in days, 

within each decile of expected length of stay.
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