1		
2	1	Concordance between suboptimal antibiotic and opioid prescribing:
3	2	Can we identify common targets for antibiotic and opioid stewardship?
4 5		can we identify common targets for antibiotic and opioid stewardship:
6	3	Low stand DL DCoDbus Dhams D12 Chan C MCs13 Danaman NLMD MCs14 During KA DbD15 Canada
7	4	Langford BJ BScPhm PharmD ^{1,2} , Chen C MSc ^{1,3} , Daneman N MD MSc ^{1,4} , Brown KA PhD ^{1,5} , Gomes
8	5	T MHSc PhD ^{3,6} , Johnstone J MD PhD ^{1,7} , Wu J MSc ¹ , Leung V BScPhm MBA ^{1,8} , Garber G MD ^{1,10} ,
9	6	Schwartz KL MD Msc ^{1,3}
10	7	
11 12		
12	8	1. Public Health Ontario, Toronto, ON
14	9	2. Hotel Dieu Shaver Health and Rehabilitation Centre, St. Catharines, ON
15	10	3. ICES (formerly known as the Institute for Clinical Evaluative Sciences), Toronto, ON
16	11	Sunnybrook Health Sciences Centre, Toronto, ON
17	12	5. Dalla Lana School of Public Health, University of Toronto, Toronto, ON
18	13	6. Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital,
19 20	14	Toronto, ON
20 21	15	7. Sinai Health System, Toronto, ON
22	16	8. Michael Garron Hospital, Toronto East Health Network, Toronto, ON
23	17	9. Department of Medicine, University of Ottawa, Ottawa, ON
24	18	10 Ottawa Hospital Research Institute Ottawa, ON
25		
26 27	19	
27 28		
29		
30		
31		
32		
33 34		
34 35		
36		
37		
38		
39		
40 41		
41		
43		
44		
45		
46		
47 48		
40 49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		
60		For Peer Review Only

 20 21 Abstract 22 Background 23 Antimicrobial resistance and opioid misuse both present major public health challenges. Identifying high 24 prescribers of both of these agents can help to provide a common target for intervention. We sought to 25 determine the correlation between suboptimal antibiotic and opioid prescribers and identify predictors 26 of concordant high prescribers in the primary care setting. 27 28 Methods 29 We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined 29 high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three 21 opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa 22 statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic 23 and opioid initiation. 24 Results 25 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and 23 opioid initiation (6% of prescribers) with kappa=0.00 (95% Cl -0.02 to 0.02). After adjustment for patient 24 population, key predictors of being a high prescriber in both categories include older patient population
 20 21 Abstract 22 Background 23 Antimicrobial resistance and opioid misuse both present major public health challenges. Identifying high 24 prescribers of both of these agents can help to provide a common target for intervention. We sought to 26 determine the correlation between suboptimal antibiotic and opioid prescribers and identify predictors 27 28 Methods 29 We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined 29 high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three 21 opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa 23 statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic 23 and opioid initiation. 24 Results 25 Results 26 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and 23 opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient 24 population, key predictors of being a high prescriber in both categories include older patient population
 Abstract Background Antimicrobial resistance and opioid misuse both present major public health challenges. Identifying high prescribers of both of these agents can help to provide a common target for intervention. We sought to determine the correlation between suboptimal antibiotic and opioid prescribers and identify predictors of concordant high prescribers in the primary care setting. Methods We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. Results We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 Background Antimicrobial resistance and opioid misuse both present major public health challenges. Identifying high prescribers of both of these agents can help to provide a common target for intervention. We sought to determine the correlation between suboptimal antibiotic and opioid prescribers and identify predictors of concordant high prescribers in the primary care setting. Methods We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. Kesults We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 Background Antimicrobial resistance and opioid misuse both present major public health challenges. Identifying high prescribers of both of these agents can help to provide a common target for intervention. We sought to determine the correlation between suboptimal antibiotic and opioid prescribers and identify predictors of concordant high prescribers in the primary care setting. Methods We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. Kesults We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 Antimicrobial resistance and opioid misuse both present major public health challenges. Identifying high prescribers of both of these agents can help to provide a common target for intervention. We sought to determine the correlation between suboptimal antibiotic and opioid prescribers and identify predictors of concordant high prescribers in the primary care setting. Methods We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. Kesults We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 Antimicrobial resistance and opioid misuse both present major public health challenges, identifying high prescribers of both of these agents can help to provide a common target for intervention. We sought to determine the correlation between suboptimal antibiotic and opioid prescribers and identify predictors of concordant high prescribers in the primary care setting. Methods We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. Results We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 prescribers of both of these agents can help to provide a common target for intervention. We sought to determine the correlation between suboptimal antibiotic and opioid prescribers and identify predictors of concordant high prescribers in the primary care setting. Methods We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. Results We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population
1125determine the correlation between suboptimal antibiotic and opioid prescribers and identify predictors1226of concordant high prescribers in the primary care setting.13271428Methods1529We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined1630high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three1731opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa1832statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic1933and opioid initiation.2134342336We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 of concordant high prescribers in the primary care setting. 27 28 Methods 29 We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. 34 23 Results 36 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 13 27 14 28 Methods 15 29 We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined 16 30 high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three 17 31 opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa 18 32 statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic 19 33 and opioid initiation. 21 34 23 5 Results 23 36 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and 24 37 opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient 25 38 population, key predictors of being a high prescriber in both categories include older patient population
 We performed a 1-year cross-sectional study of primary care physicians in Ontario, Canada. We defined high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. Results We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 high prescribers as the top quartile of antibiotic or opioid prescribers using three antibiotic and three opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. Results We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 and opioid initiation. 31 opioid initiation. 32 statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. 33 and opioid initiation. 34 22 35 Results 36 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 31 opioid prescribing metrics. We tabulated agreement between prescribing categories using the kappa 32 statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic 33 and opioid initiation. 34 35 Results 36 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and 37 opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient 38 population, key predictors of being a high prescriber in both categories include older patient population
 32 Statistic. We built a multivariable logistic regression model to identify predictors of both high antibiotic and opioid initiation. 34 35 Results 36 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient population, key predictors of being a high prescriber in both categories include older patient population
 and opioid initiation. 34 35 Results 36 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and 37 opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient 38 population, key predictors of being a high prescriber in both categories include older patient population
 34 35 Results 36 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and 37 opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient 38 population, key predictors of being a high prescriber in both categories include older patient population
 Results 36 We included 9,469 physicians. We observed minimal overlap between high antibiotic initiation and 37 opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient 38 population, key predictors of being a high prescriber in both categories include older patient population
24 37 opioid initiation (6% of prescribers) with kappa=0.00 (95% CI -0.02 to 0.02). After adjustment for patient 25 38 population, key predictors of being a high prescriber in both categories include older patient population
25 38 population, key predictors of being a high prescriber in both categories include older patient population
26 39 (aOR 1.42, 95%Cl 1.24 to 1.62), physician male gender (aOR 1.46, 95%Cl 1.14 to 1.86), and late career
27 40 stage (aOR 1.76, 95%Cl 1.26 to 2.46).
29 41
30 42 Interpretation
Among primary care physicians, there was a lack of association between high antibiotic prescribing and
32 44 high opioid prescribing. While there is overlap in the behavioural science underlying suboptimal
33 45 prescribing, our findings suggest separate tailored approaches to antibiotic and opioid stewardship
³⁴ 46 strategies are needed.
35 36
37
38
39
40
41
42
43
44 45
45

Page 6 of 24

47 Introduction

Rising antimicrobial resistance (AMR) is an urgent public health threat. Most antibiotics prescribed in humans are in the outpatient setting, acting as an important driver for antibiotic resistance in the community (1). In the US alone, antibiotic resistant infections claim 23,000 lives annually (2). At the same time another drug-related public health crisis looms. The epidemic of opioid overuse is rapidly evolving, and in the United States, prescription opioids are associated with 17,000 overdose-related deaths annually (3). While the use of non-prescribed opioid related deaths is increasing, prescription opioids still account for at least 25% of opioid-related deaths (4).

Despite their obvious differences, these two public health threats have notable commonalities.
In North America, both antibiotic and opioid overuse are largely iatrogenic in origin due to overprescribing behaviour (5). There is wide variability in prescribing practices for both of these
drug classes, which is not fully explained by differences in practice settings and patient
populations (6–8). Additionally, patients of high prescribers of both antibiotics and opioids are
more likely to experience harm (6,8) providing an impetus for urgent intervention.

Understanding overlap in over-prescribing can help identify unique prescriber populations
where antibiotic and opioid stewardship can be focused and support aligned efforts to improve
the use of these agents and reduce their harm. Our objective was to evaluate the correlation
between suboptimal opioid and antibiotic prescribers as well as to identify predictors of
concordant high prescribers in the primary care setting.

68 Methods

69 Study Design and Setting

We performed a 1 year cross-sectional study evaluating primary care physician prescribers of
opioids and antibiotics during the period of March 1, 2017 to February 28, 2018. We conducted
this study at ICES (formerly the Institute for Clinical Evaluative Sciences) in Ontario, Canada's
most populous province. ICES is an independent, non-profit research institute whose legal

status under Ontario's health information privacy law allows it to collect and analyze health
care and demographic data, without consent, for health system evaluation and improvement.
ICES is considered a prescribed entity under Ontario's *Personal Health Information Protection Act*, which securely collects, stores, and analyzes personal health information for the 14 million
residents of the province.

79 Eligible Population

Eligible physicians included all primary care physicians in Ontario. We excluded physicians with
less than 500 patient visits per year, physicians prescribing the lowest 5% of antibiotic
prescriptions, the lowest 5% of opioid prescribers to ensure that only active prescribers were
included in the cohort. We also excluded physicians with a focus or specialty of pain (20 or
more billings for pain management) or palliative care (25% or more of all billings were for a
palliative care indication) to ensure high opioid prescribers were not categorized as such due to
their unique practice setting and patient population.

87 Data Sources

Antibiotic prescribing was identified using XponentTM, a database owned by IQVIA. This database includes dispensed outpatient medications aggregated at the physician level. We included oral antibiotics in the World Health Organization Anatomical Therapeutic Chemical Classification J01. (9) A list of included antibiotic classes is shown in Appendix 1. Only new antibiotic prescriptions were included. Xponent[™] captures 61% of medications dispensed from community pharmacies in the province, and a patented, internally-validated geospatial projection algorithm extrapolates these data to estimate 100% of prescribing by physicians (10). We previously undertook a validation analysis in patients \geq 65 years of age which revealed that this database has reasonable performance at identifying high antibiotic prescribing physicians when compared with the Ontario Drug Benefit (ODB) database, the province's highly accurate outpatient drug dispensing database (11).

Opioid prescribing was identified using the province's Narcotics Monitoring System (NMS)
 which collects patient-level dispensing data for all controlled drugs (including opioids) from all

Page 8 of 24

outpatient pharmacies in Ontario, regardless of payer (12). All opioids or opioid-containing combination products within NMS were captured regardless of indication with the exception of opioids primarily used for managing opioid use disorder (methadone and buprenorphine/naloxone). A list of included opioids is shown in Appendix 2.

Both Xponent[™] and NMS include unique identifiers for each physician, allowing data to be linked with ICES databases. Ontario has a universal healthcare system which provides publicly funded access to healthcare to all citizens, permanent residents, and certain refugees. Population-wide ICES databases included the Registered Persons Database (RPDB) which contains demographic information such as date of birth, date of death, and sex; the Ontario Health Insurance Plan (OHIP) database which contains all physician billing information; ICES Physician Database (IPDB), which contains demographic information on all licensed Ontario physicians; and the Canadian Institute for Health Information Discharge Abstract Database (CIHI-DAD), containing hospital visit-related information.

28 114 Exposures and Covariates 29

Our main exposures of interest included practice and physician level factors that may be associated with suboptimal prescribing practices. Practice-level covariates included aggregate patient age, sex, neighborhood income quintile, comorbidities (i.e., acute myocardial infarction, congestive heart failure, chronic obstructive pulmonary disease, diabetes, hypertension, asthma, mental health diagnosis in previous year), and previous healthcare utilization. Physician-level covariates included gender, years since medical graduation (early career: <11 years, mid-career: 11-24 years, late career: >24 years), country of medical school, and patient visits.

123 Outcomes: Suboptimal Antibiotic and Opioid Prescribing Indicators

The main primary and secondary outcomes were measured at the prescriber level, as six
 separate metrics. Physicians ranked in the top quartile of any of these metrics were considered
 "high prescribers" for that particular metric.

- 55 127 Primary Outcomes
 56

Page 9 of 24

Antibiotic Initiation was defined as a physician's antibiotic prescription volume (number of
 prescriptions) divided by their patient visits to determine their antibiotic initiation rate. *Opioid Initiation* was estimated as the volume of opioid prescriptions initiated by a prescriber. It was
 calculated by dividing the number of patients with one or more opioid prescription written by

132 that physician by the number of patients seen by that physician during the study period.

3 133 Secondary Outcomes

Antibiotic Selection was defined as the proportion of all antibiotics prescribed that were broad spectrum. Broad-spectrum antibiotic classes included penicillin with beta lactamase inhibitor,
 fluoroquinolones, macrolides, 2nd and 3rd generation cephalosporins, and clindamycin. This
 definition is based on previous studies on broad spectrum prescribing and identified risk of
 community-acquired *C. difficile* infection (13,14).

Opioid Selection was defined as the proportion of a physician's patients prescribed an opioid
 who received a prescription for one or more high-dose opioids. High dose opioids were defined
 as any prescription with a dispensed daily dose greater than 90 morphine milligram equivalents
 (MME). The Canadian Guideline for Opioids for Chronic Non-Cancer Pain and United States
 Centers for Disease Control Guideline for Prescribing Opioids for Chronic Pain recommend
 avoiding increasing doses beyond 90 MME or carefully justifying any decisions to titrate to this
 dose (15,16).

Antibiotic Duration was defined as the proportion of all antibiotic prescriptions that were
 prescribed for a duration of longer than 8 days. This threshold was selected as most
 uncomplicated infections managed in primary care settings require duration of antibiotic
 therapy of 7 days or less (17). A previous analysis by our team found wide inter-physician
 variability in long duration antibiotic prescribing in the community setting (18).

Opioid Duration was defined as the proportion of a physician's patients prescribed an opioid
 with one or more opioid prescriptions with a dispensed duration longer than 28 days.
 Guidelines recommend limiting initial opioid treatment for acute pain to no longer than 7 days

154 (15). The probability of continuing on a long-term opioid (1 year or longer) increases

155 significantly when the first prescription supply exceeds 10 or 30 days (19). A conservative
 156 estimate of 28 days was selected to identify prescribers who select longer courses of opioid
 157 therapy.

158 Statistical Analysis

Physicians in the bottom 75% (non-high prescriber) and top 25% (high prescriber) of antibiotic and opioid initiation categories were compared descriptively in terms of their individual and practice characteristics. A kappa statistic with 95% confidence intervals was calculated to determine the agreement between high antibiotic and high opioid initiation (primary analysis) and high prescribing in at least two categories of antibiotic and opioid categories (e.g., initiation, selection, and duration). Kappa values were categorized in terms of their extent of agreement between categories: 0 to 0.20 (none to slight); 0.21 to 0.40 (fair); 0.41 to 0.60 (moderate); 0.61 to 0.80 (substantial); 0.81 to 1.00 (almost perfect) (20).

We built a mixed-effects logistic regression model with the binary outcome of high opioid and high antibiotic initiating physicians compared to all other physicians, with random intercepts for each physician. First, a null model was prepared with only the physician random intercept, then we added the physician and practice characteristics listed above to identify independent predictors associated with high initiation of both antibiotics and opioids.

172 Ethics

- 173 This project has Ethics Research Board approval from Public Health Ontario

46 175 Results

During the study period, there were 13,091 potentially eligible family or general practice
physicians, of which we included 9,994. (Figure 1) The median number of daily patient visits
per physician was 18 (IQR 14-25). Ninety one (91%) of practices were in an urban setting.
Antibiotic and opioid prescribing indices varied across physicians. Antibiotics were initiated in a

- 56 180 median of 8.9% of visits (IQR 6.0 to 13.1%); the median proportion of patients with an opioid

1		
2 3	181	initiated during the study period was 5.7% (IQR 3.4 to 9.1%); broad spectrum antibiotics were
4 5	182	selected in 40% of antibiotic prescriptions (IQR 31 to 51%); high dose opioids were selected in
6 7	183	6.1% of prescriptions (IQR 2.0% to 10.9%); proportion of prolonged duration antibiotic
8 9	184	prescriptions was 32% (IQR 21 to 46%); and the proportion of prolonged duration opioid
10	185	prescriptions was 27% (IQR 11 to 41%).
11 12 13 14	186	High Antibiotic Prescribers
15 16	187	High antibiotic initiators tended to work in busier practices with a greater proportion of patient
17	188	visits per day, were more likely to be male and had a greater proportion of visits that were
18 19	189	emergency room visits when compared to non-high prescribers of antibiotics. (Table 1).
20 21	190	There was negligible to weak association between the different antibiotic prescribing indices:
22 23	190	antibiotic initiation-antibiotic selection (kappa 0.05, 95%Cl 0.03 to 0.07); antibiotic initiation-
24 25	191	antibiotic duration (kappa 0.06, 95% Cl 0.04 to 0.08); and antibiotic selection-antibiotic duration
26 27	192	(kappa 0.06, 95% CI 0.04 to 0.08). (Figure 2)
28 29	195	(kappa 0.00, 95% Cl 0.04 to 0.08). (ligure 2)
30 31	194	High Opioid Prescribers
32 33	195	High opioid initiators were more likely to be male, are in late career, have more nursing home
34 35	196	patient visits, have a greater proportion of patients aged 65 or older, and a greater number of
36 37	197	patient visits when compared to non-high prescribers of opioids. (Table 1)
38 39	198	There was slight agreement between the different opioid prescribing indices: opioid initiation-
40 41	199	opioid selection (kappa 0.16, 95% Cl 0.14 to 0.18); opioid initiation-opioid duration (kappa 0.15,
42 43	200	95% CI 0.13 to 0.17); and opioid selection-opioid duration (kappa 0.18, 95% CI 0.16 to 0.20).
44 45	201	(Figure 2)
46 47 48	202	High Prescribers of Both Antibiotics and Opioids
49 50	203	The kappa coefficient between high antibiotic and high opioid initiators was 0.00 (95% CI -0.02
51 52	204	to 0.02) indicating there is a lack of agreement between these 2 groups and the overlap in the
53 54	205	groups is no greater than that due to chance alone. Among all physicians, a small subset, 573
55		
56 57		
58 59		
60		For Peer Review Only

Page 12 of 24

(6.2%) were both high antibiotic and high opioid initiators (antibiotic initiation-opioid initiation). (Figure 3)

There was low agreement between the other antibiotic and opioid prescribing indices. The highest agreement, albeit slight, was between antibiotic selection-opioid initiation (kappa 0.18, 95% CI 0.16 to 0.20) and antibiotic selection-opioid duration (kappa 0.12, 95% CI 0.10 to 0.14). The lowest agreement was between antibiotic duration-opioid selection (kappa 0.03, 95% CI 0.01 to 0.05), antibiotic selection-opioid selection (kappa -0.02, 95% CI -0.04 to 0.00) and antibiotic initiation-opioid initiation (as above). (Figure 3)

Predictors of Combined High Opioid and Antibiotic Initiation

In the multivariable analysis, predictors of physicians who ranked as both high antibiotic and high opioid prescribers included proportion of adult patients aged 65 or older (aOR 1.42, 95%CI 1.24 to 1.62, per 10% increase), proportion of patients with ER visits within the previous two years (aOR 1.24 95%Cl 1.10 to 1.39, per 10% increase), physician male gender (aOR 1.46, 95%Cl 1.14 to 1.86), mid-career compared to early career (aOR 1.41, 95%Cl 1.01 to 1.99), late career compared to early career (aOR 1.76, 95%CI 1.26 to 2.46), proportion of all visits that were nursing home visits (aOR 1.08, 95%Cl 1.01 to 1.15, per 10% increase). Variables associated with not ranking as a high prescriber of both antibiotics and opioids include a higher number of daily visits (compared to less than 10 visits/day, 10-20 visits/ day (aOR 0.59, 95%CI 0.44-0.78, >20 visits per day (aOR 0.61 95%CI 0.45-0.83)), rural practice (aOR 0.56, 95% CI 0.40 to 0.78) and high income quintile of patient population (aOR 0.70, 95%Cl 0.54-0.90). (Table 2)

Interpretation

Our study of over 9,000 primary care physicians indicates that there is a lack of correlation between being a high antibiotic prescriber and being a high opioid prescriber when considering various categories of suboptimal prescribing (initiation, selection and duration). This finding indicates that suboptimal antibiotic and opioid prescribers tend to be different, with minimal overlap, suggesting key differences in patient populations and drivers for antibiotic and opioid overuse. Although we did not observe a significant overlap beyond what would be expected by

chance in physicians who are both high antibiotic and high opioid prescribers, we did find a small subset of high prescribers of both antibiotics and opioids that have unique characteristics when compared to other physicians. Most notably, these physicians were more likely to be male and be practicing in a later stage of career.

Other studies have found associations between antibiotic and prescribing of other medications. Quinn et al. conducted a population-based cohort study of nursing home physicians, also in the province of Ontario, Canada (21). The authors found that compared to average intensity antibiotic prescribers, high intensity antibiotic prescribers were more likely to prescribe proton-pump inhibitors (OR 1.38, 95% CI 1.27 to 1.51), benzodiazepines (OR 1.21, 95% CI 1.11 to 1.32), and opioids (OR 1.28, 95% CI 1.17 to 1.39). The authors defined high prescribers as those that prescribe above the upper 2 standard-deviation limit based on proportions of their patients receiving a prescription for one of these medications. This equated to 17% of physicians being classified as high antibiotic prescribers whereas in our study we defined a high prescriber as being in the top 25%. These differences in definitions, methodology, as well as the more narrow and defined population of long-term care prescribers, may account for the differences in findings compared to our study. Similarly, a study by Li et al. evaluating primary care practices in the UK found that antibiotic prescribing was associated with prescribing of other medications, which persisted after adjustment for practice and patient characteristics (22). Prescribing was defined by the number of prescriptions for a given medication divided by the practice size. However, the authors didn't specifically explore the association between antibiotic and opioid prescribing. The authors conclude that the propensity to prescribe antibiotics is linked to the propensity to prescribe medications in general, suggesting that antimicrobial stewardship interventions should address broader prescribing behaviours beyond knowledge of appropriate antibiotic use.

Our study also differs from previous analyses in that we have evaluated three different decision points of antibiotic and opioid prescribing: initiation, selection of the regimen, and treatment duration. Daneman et al. evaluated antibiotic prescribers in nursing homes and found that prescribing behaviour differs substantially across these three domains of prescribing (23). Although prescribing tendencies remain consistent over time for each individual prescriber,

similar to our findings, there was weak to no correlation between the different tendencies of initiation, selection, and duration of antibiotics prescribed by primary care physicians in a long-term care setting. This suggests that strategies to optimize prescribing should be tailored to the specific prescribing behaviour of interest.

While high prescribing of antibiotics did not predict high prescribing of opioids, a small subset of clinicians are high prescribers in both categories. These findings echo recent cohort studies indicating that male physicians were more likely to prescribe an antibiotic for a viral indication (24) and that those physicians who have been in late career were more likely to prescribe unnecessary or prolonged antibiotic courses (24,25).

Behavioural, emotional and sociological drivers are associated with overuse of both antibiotics and opioids. Beliefs about consequences centered around fear of under-treatment have been reported with both of these agents. Additionally the social influence of patient pressures or perceived desire for these agents may play a role in prescribing them unnecessarily (26,27). Despite these similarities, there are clear differences in the drivers of antibiotic and opioid misuse. Antibiotics, typically prescribed acutely often have a perceived benefit that outweighs their harms, especially as the harms of antibiotics are less visible to the prescriber and may be more distant or dealt with by another provider (e.g., antimicrobial resistance or C. difficile infection). On the other hand opioids are typically problematic when used chronically, hence inter-disciplinary and continuity of care issues arise in terms of starting and stopping the medication. Additionally the harms of opioid overuse (e.g., addiction, diversion) may be more visible and tangible to the prescriber as the initial prescriber may need to re-assess, titrate, taper or discontinue the medication. Despite their important role as public health threats, these stark differences in drivers of misuse mean that the physicians over-prescribing antibiotics and opioids are mostly distinct. There is much overlap in the behavioural science behind over-prescribing, but public health efforts should be tailored to the specific drug class, and prescribing behaviour, of interest. These findings may be useful for public health professionals, family physicians, opioid and antibiotic stewards seeking to develop strategies and identify efficiencies in addressing high prescribing practices.

290 Limitations

Limitations to this work include the potential for unmeasured confounders. Since high-opioid and high-antibiotic prescribers tend to work in different practice settings these differences may contribute to less overlap than would otherwise be expected. Canadian opioid prescribing guidelines for chronic non-cancer pain (16) were released in 2017 during this study period and may have shifted practice patterns towards reduced opioid use, particularly for those who were previously high prescribers. This could have potentially masked any overlap that may have previously existed between high opioid and antibiotic prescribers. In fact, abrupt discontinuation of opioids represents inappropriate prescribing as this can lead to withdrawal symptoms. It is also important to note that although six separate metrics of antibiotic and opioid prescribing were selected as proxy measures of appropriateness, this does not equate to a definitive assessment of appropriateness. This is significant since opioid and antibiotic stewardship efforts aim to optimize the appropriate use of these medications rather than indiscriminately reduce their use. An additional limitation is that there is no standard definition of "high-prescriber". We chose to use top quartile in our study as this has been previously measured and validated against other standard metrics of antibiotic use (11).

34 306 Conclusion

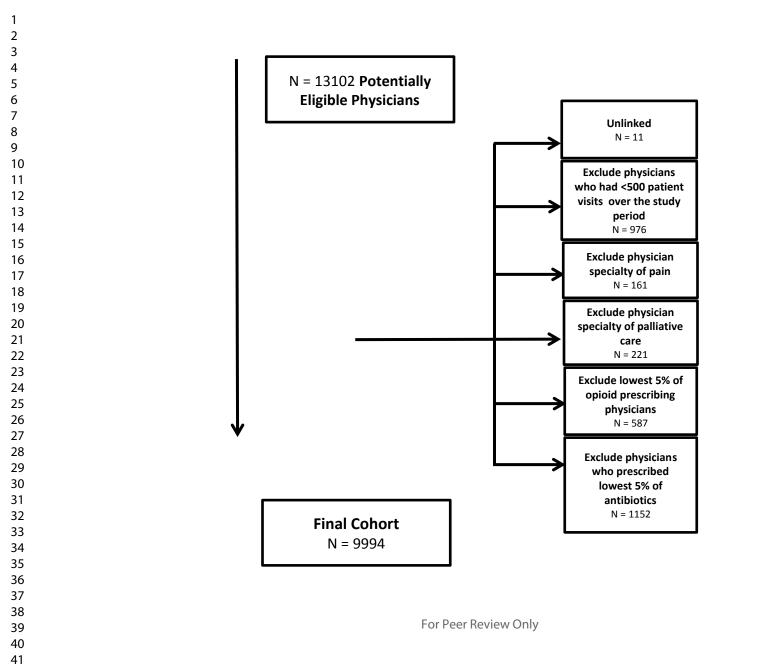
 Among primary care physicians, there was minimal overlap between those who are high antibiotic prescribers and high opioid prescribers. Although these physicians tend to be different, predictors of a small subset of both high antibiotic and high opioid prescribers include practices with an older patient population, late career physicians and male gender. Antibiotic and opioid stewardship strategies to address these public health crises require tailored approaches.

1 2		
3	317	
4 5 6 7	318	Acknowledgment and Funding
8 9	319	This study was funded by the Physician Services Incorporated Foundation
10 11	320	
12 13	321	This study was supported by ICES, which is funded by an annual grant from the Ontario Ministry of
14 15 16	322	Health and Long-Term Care (MOHLTC). Parts of this material are based on data and/or information
17 18	323	compiled and provided by CIHI. The opinions, results and conclusions reported in this paper are those of
19 20	324	the authors and are independent from the funding sources. No endorsement by ICES, CIHI, or the Ontario
21 22	325	MOHLTC is intended or should be inferred.
23 24 25 26	326	
27 28 29	327	
30 31	328	Concept and design: All authors.
32 33	329	Acquisition, analysis, or interpretation of data: All authors.
34	330	Drafting of the manuscript: Langford, Schwartz.
35 36	331	Critical revision of the manuscript for important intellectual content: All authors.
37 38	332	Statistical analysis: Chen, Brown
39	333	Administrative, technical, or material support: Wu.
40 41	334	
42 43		
44		
45 46		
47 48		
40 49		
50		
51 52		
53		
54		
55 56		
57		
58 59		
60		For Peer Review Only

1			
2 3 4	335	Ref	erences
5	336	1.	Canadian Nosocomial Infection Surveillance Program. Summary Report of Healthcare
6	337		Associated Infection (HAI), Antimicrobial Resistance (AMR) and Antimicrobial Use (AMU)
7 8	338		Surveillance Data from January 1, 2013 to December 31, 2017 [Internet]. Public Health
9	339		Agency of Canada; 2018. Available from: https://ipac-
10	340		canada.org/photos/custom/Members/CNISPpublications/CNISP%202013-
11 12	341		2017%20Report_Final_EN.pdf
13	342	2.	Centers for Disease Control and Prevention. Antibiotic Resistance: A Global Threat
14 15	343		[Internet]. 2018. Available from: https://www.cdc.gov/features/antibiotic-resistance-
16	344		global/index.html
17	J++		Biobaly index.item
18	345	3.	Scholl L, Seth P, Kariisa M, Wilson N, Baldwin G. Drug and Opioid-Involved Overdose
19 20	346		Deaths — United States, 2013–2017. MMWR Morb Mortal Wkly Rep [Internet]. 2018 Dec
20 21	347		21 [cited 2020 Feb 25];67(5152). Available from:
21	348		http://www.cdc.gov/mmwr/volumes/67/wr/mm675152e1.htm?s_cid=mm675152e1_w
23	0.0		
24	349	4.	Ontario Agency for Health Protection and Promotion (Public Health Ontario), Office of the
25	350		Chief Coroner;; Ontario Drug Policy Research Network, Ontario Forensic Pathology Service,
26 27	351		Ontario Drug Policy Research Network. Opioid Mortality Surveillance Report Analysis of
28	352		Opioid-Related Deaths in Ontario July 2017–June 2018. Toronto, ON: Queen's Printer for
29	353		Ontario; 2019.
30			
31	354	5.	Gomes T, Khuu W, Martins D, Tadrous M, Mamdani MM, Paterson JM, et al. Contributions
32 33	355		of prescribed and non-prescribed opioids to opioid related deaths: population based
34	356		cohort study in Ontario, Canada. BMJ. 2018;362(Journal Article):k3207.
35			
36	357	6.	Dhalla IA, Mamdani MM, Gomes T, Juurlink DN. Clustering of opioid prescribing and
37	358		opioid-related mortality among family physicians in Ontario. Can Fam Physician Med Fam
38 39	359		Can. 2011;57(3):e92-6.
40		_	
41	360	7.	Daneman N, Gruneir A, Newman A, Fischer HD, Bronskill SE, Rochon PA, et al. Antibiotic
42	361		use in long-term care facilities. J Antimicrob Chemother. 2011;66(12):2856–63.
43 44	362	8.	Daneman N, Bronskill SE, Gruneir A, Newman AM, Fischer HD, Rochon PA, et al. Variability
44		о.	
46	363 264		in Antibiotic Use Across Nursing Homes and the Risk of Antibiotic-Related Adverse
47	364		Outcomes for Individual Residents. JAMA Intern Med. 2015;175(8):1331–9.
48	365	9.	World Health Organization. Guidelines for ATC classification and DDD assignment. In:
49 50	366	5.	Guidelines for ATC classification and DDD assignment. World Health Organization; 1996.
51	500		calacimes for Are classification and DDD assignment. World ficatifi Organization, 1990.
52	367	10.	Boardman C, asignee. System and method for estimating prdouct distribution using a
53	368	_ `	product specific universe. US patent 7,174,304, 2007.
54			
55 56			
57			
58			
59			For Peer Review Only

1			
2 3 4 5 6 7	369 370 371 372	11.	Schwartz KL, Chen C, Langford BJ, Brown KA, Daneman N, Johnstone J, et al. Validating a popular outpatient antibiotic database to reliably identify high prescribing physicians for patients 65 years of age and older. Conly J, editor. PLOS ONE. 2019 Sep 26;14(9):e0223097.
8 9 10	373 374	12.	Ontario Ministry of Health and L. Narcotic monitoring system (NMS): pharmacy reference manual version 1.2]. Toronto; 2012.
11 12 13 14	375 376	13.	Steinman MA. Predictors of Broad-Spectrum Antibiotic Prescribing for Acute Respiratory Tract Infections in Adult Primary Care. JAMA. 2003 Feb 12;289(6):719.
15 16 17 18 19	377 378 379	14.	Brown KA, Khanafer N, Daneman N, Fisman DN. Meta-Analysis of Antibiotics and the Risk of Community-Associated Clostridium difficile Infection. Antimicrob Agents Chemother. 2013 May;57(5):2326–32.
20 21 22	380 381	15.	Dowell D, Haegerich TM, Chou R. CDC Guideline for Prescribing Opioids for Chronic Pain— United States, 2016. JAMA. 2016 Apr 19;315(15):1624.
23 24 25 26 27	382 383 384	16.	Busse JW, Craigie S, Juurlink DN, Buckley DN, Wang L, Couban RJ, et al. Guideline for opioid therapy and chronic noncancer pain. Can Med Assoc J. 2017 May 8;189(18):E659–66.
28 29 30	385 386	17.	Spellberg B. The New Antibiotic Mantra-"Shorter Is Better". JAMA Intern Med. 2016;176(9):1254–5.
31 32 33 34 35 36	387 388 389 390	18.	Fernandez-Lazaro CI, Brown KA, Langford BJ, Daneman N, Garber G, Schwartz KL. Late- career Physicians Prescribe Longer Courses of Antibiotics. Clin Infect Dis [Internet]. 2019 Jan 7 [cited 2019 Oct 11]; Available from: https://academic.oup.com/cid/advance- article/doi/10.1093/cid/ciy1130/5275150
37 38 39 40 41	391 392 393	19.	Shah A, Hayes CJ, Martin BC. Characteristics of Initial Prescription Episodes and Likelihood of Long-Term Opioid Use — United States, 2006–2015. MMWR Morb Mortal Wkly Rep. 2017 Mar 17;66(10):265–9.
42 43 44	394 395	20.	McHugh ML. Interrater reliability: the kappa statistic. Biochem Medica. 2012;22(3):276– 82.
45 46 47 48 49 50	396 397 398 399	21.	Quinn KL, Campitelli MA, Diong C, Daneman N, Stall NM, Morris AM, et al. Association between Physician Intensity of Antibiotic Prescribing and the Prescription of Benzodiazepines, Opioids and Proton-Pump Inhibitors to Nursing Home Residents: a Population-Based Observational Study. J Gen Intern Med. 2019;(Journal Article).
51 52 53 54 55 56 57	400 401 402	22.	Li Y, Mölter A, White A, Welfare W, Palin V, Belmonte M, et al. Relationship between prescribing of antibiotics and other medicines in primary care: a cross-sectional study. Br J Gen Pract. 2019 Jan;69(678):e42–51.
58 59			For Peer Review Only

1			
2 3	403	23.	Daneman N, Campitelli MA, Giannakeas V, Morris AM, Bell CM, Maxwell CJ, et al.
4	404		Influences on the start, selection and duration of treatment with antibiotics in long-term
5 6	405		care facilities. CMAJ Can Med Assoc J J Assoc Medicale Can. 2017;189(25):E851–60.
7 8	406	24.	Silverman M, Povitz M, Sontrop JM, Li L, Richard L, Cejic S, et al. Antibiotic Prescribing for
8 9	407		Nonbacterial Acute Upper Respiratory Infections in Elderly Persons. Ann Intern Med. 2017
10 11	408		Jun 6;166(11):765.
12	409	25.	
13 14	410		physicians prescribe more prolonged courses of antibiotics among outpatients: a cohort
15	411		study of 10,616 family physicians in Ontario, Canada. ClinInfectDis. (Journal Article).
16 17	412	26.	Desveaux L, Saragosa M, Kithulegoda N, Ivers NM. Understanding the behavioural
18 19	413		determinants of opioid prescribing among family physicians: a qualitative study. BMC Fam
20	414		Pract. 2019;20(1):59-019-0947–2.
21 22	415	27.	
23	416 417		a qualitative, multidisciplinary investigation. BMJ Open. 2014;4(11):e006442-2014– 006442.
24 25	417		
26 27	418		
28	410		
29 30	419		
31			
32 33			
34 35			
36			
37 38			
39			
40 41			
42 43			
44			
45 46			
47			
48 49			
50			
51 52			
53 54			
55			
56 57			
58			
59 60			For Peer Review Only


420 Table 1. Characteristics of High and Low Antibiotic and Opioid Initiators

	Antibiotic	Antibiotic Initiators		nitiators	
Variables	Lowest 75%	Highest 25%	Lowest 75%	Highest 25%	
	N = 7496	N = 2498	N = 7496	N = 2498	
Physician characteristics, n (%)					
Median daily patient visits					
<10	528 (7.04)	194 (7.77)	494 (6.59)	228 (9.13)	
10-20	3746 (49.97)	1068 (42.75)	3814 (50.88)	1000 (40.03)	
>20	3222 (42.98)	1236 (49.48)	3188 (42.53)	1270 (50.84)	
Age (median, IQR)	53 (44-61)	53 (44-61)	51 (42-59)	58 (49-66)	
Gender	55 (44 01)	55 (44 01)	51 (42 55)	50 (45 00)	
F	3533 (47.13)	933 (37.35)	3784 (50.48)	682 (27.3)	
M	3963 (52.87)	1565 (62.65)	3712 (49.52)	1816 (72.7)	
Years since medical graduation	3303 (32.07)	1303 (02.03)	5712 (45.52)	1010(72.7)	
<11y	1644 (21.93)	482 (19.3)	1830 (24.41)	296 (11.85)	
11-24y	2173 (28.99)	767 (30.7)	2410 (32.15)	530 (21.22)	
>24y	3679 (49.08)	1249 (50)	3256 (43.44)	1672 (66.93)	
Country of medical school	5075 (45.06)	1249 (30)	3230 (43.44)	1072 (00.93)	
Canada/U.S.	4661 (62.18)	1527 (61.13)	4525 (60.37)	1663 (66.57)	
Other	1703 (22.72)	620 (24.82)	1657 (22.11)	666 (26.66)	
Unknown	1132 (15.1)	351 (14.05)	1314 (17.53)	169 (6.77)	
Rurality	1152 (15.1)	551 (14.05)	1514 (17.55)	109 (0.77)	
Urban	6791 (90.59)	2296 (91.91)	6891 (91.93)	2196 (87.91)	
Rural	705 (9.41)	202 (8.09)	605 (8.07)	302 (12.09)	
Emergency visits (mean proportion, SD)	8.35 (22.56)	202 (8.09) 20.9 (35.13)	14.03 (29.34)	3.85 (14.78)	
Long-term care visits (mean proportion, 3D)	8.55 (22.50)	20.9 (55.15)	14.05 (29.54)	5.65 (14.76)	
SD)	2.44 (8.95)	1.59 (8.74)	1.03 (4.78)	5.81 (15.22)	
Roster size (median, IQR)	1101 (751.5-1540)	1080 (616-1561)	1026 (683-1448)	1303 (893-17	
	1101 (751.5-1540)	1000 (010-1301)	1020 (003-1440)	1303 (855-17	
Practice characteristics, n (%)					
Age group (mean proportion, SD)	/		/		
<18	15.55 (7.08)	17.73 (6.95)	17.1 (7.06)	13.06 (6.37)	
18-64	60.48 (9.97)	61.29 (9.61)	62 (8.98)	56.72 (11.33)	
65+	23.98 (12.38)	20.98 (11.45)	20.9 (10.25)	30.21 (14.73)	
Female (mean proportion, SD)	57.07 (9.09)	56.07 (6.86)	57.71 (8.54)	54.15 (8.2)	
Neighbourhood income quintile of					
patient population**					
Low (quintile 1-3)	6141 (81.92)	2050 (82.07)	5942 (79.27)	2249 (90.03)	
High (quintile 4-5)	1355 (18.08)	448 (17.93)	1554 (20.73)	249 (9.97)	
Comorbidities in the previous 2 years					
(mean proportion, SD)		0.54 (0.44)	0.47 (0.45)		
AMI	0.52 (0.5)	0.51 (0.44)	0.47 (0.45)	0.66 (0.56)	
CHF	0.88 (0.94)	0.8 (0.74)	0.78 (0.81)	1.09 (1.1)	
COPD	1.16 (0.82)	1.14 (0.7)	1.07 (0.73)	1.43 (0.91)	
Diabetes	1.55 (0.79)	1.42 (0.6)	1.45 (0.71)	1.72 (0.83)	
Hypertension	2.26 (0.88)	2.09 (0.78)	2.15 (0.8)	2.42 (1)	
Asthma	0.94 (0.48)	1.07 (0.46)	1.01 (0.46)	0.84 (0.52)	
Psychiatric	20.62 (7.82)	20.75 (6.22)	20.59 (6.89)	20.84 (8.92)	
Healthcare utilization in the previous 2					
years (mean proportion, SD)					
Hospitalization	14.65 (6.28)	14.99 (5.99)	14.44 (5.75)	15.62 (7.34)	
ED visits	41.94 (12.17)	46.09 (13.69)	42.69 (12.75)	43.82 (12.49)	

	Model		
Variables	Unadjusted OR (95% CI)	Adjusted OR (95% C	
Practice characteristics			
Age group proportion (per 10%)			
<18	0.71 (0.63-0.8)	1.25 (1.03-1.53)	
65+	1.31 (1.24-1.38)	1.42 (1.24-1.62)	
Female proportion (per 10%)	0.74 (0.67-0.81)	0.85 (0.74-0.97)	
Mean Neighbourhood income quintile of patient	, , , , , , , , , , , , , , , , , , ,	х <i>у</i>	
population			
High	0.62 (0.49-0.79)	0.7 (0.54-0.90)	
Low	reference	Reference	
Comorbidities proportion in the previous 2 years			
AMI	1.37 (1.20-1.56)	1.12 (0.86-1.47)	
CHF	1.13 (1.05-1.22)	0.68 (0.55-0.83)	
COPD	1.22 (1.12-1.33)	1.03 (0.9-1.17)	
Diabetes	1.1 (1-1.21)	0.95 (0.83-1.08)	
Hypertension	1.09 (1-1.19)	1.03 (0.92-1.14)	
Asthma	0.62 (0.51-0.75)	0.85 (0.69-1.05)	
Psychiatric	1 (0.99-1.01)	1 (0.99-1.01)	
Healthcare utilization proportion in the previous 2			
years (per 10%)			
Hospitalization	1.22 (1.09-1.37)	0.95 (0.69-1.32)	
ED visits	1.11 (1.05-1.19)	1.24 (1.1-1.39)	
Physician characteristics			
Gender			
Μ	2.12 (1.77-2.53)	1.46 (1.14-1.86)	
F	reference	reference	
Years since medical graduation			
11-24у	1.76 (1.31-2.37)	1.41 (1.01-1.99)	
>24y	2.79 (2.13-3.64)	1.76 (1.26-2.46)	
<11y	reference	reference	
Country of medical school			
Other	0.89 (0.73-1.08)	0.96 (0.78-1.18)	
Unknown	0.34 (0.24-0.48)	0.6 (0.4-0.9)	
Canada/U.S.	reference	reference	
Median daily patient visits	· · · · · · · · · ·		
10-20	0.38 (0.26-0.55)	0.59 (0.44-0.78)	
20+	1.13 (0.93-1.37)	0.61 (0.45-0.83)	
0-9	reference	reference	
Rurality			
Rural	0.98 (0.73-1.3)	0.56 (0.4-0.78)	
Urban	reference	reference	
Proportion Emergency visits (per 10%) Proportion Long-term care visits (per 10%)	0.96 (0.93-0.99)	0.94 (0.9-0.98)	
kroportion Long-term care visits (per 1(1%)	1.14 (1.06-1.22)	1.08 (1.01-1.15)	

421 Table 2. Predictors of Physicians Who Are Both High Antibiotic and High Opioid Prescribers

1		
2 3	423	Figure 1. Flow Diagram of Study Exclusions
4 5	424	Figure 2. Concordance between suboptimal antibiotic and opioid prescribing metrics (within class)
6 7	425 426	kappa (95% CI)
8	427	Figure 3. Concordance between suboptimal antibiotic and opioid prescribing metrics (cross opioid-
9 10	428	antibiotic class) kappa (95% Cl)
11	429	
12	430	
13 14	430	
15		
16 17		
18		
19 20		
21		
22 23		
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
34		
35 36		
30 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
52 53		
54		
55 56		
57		
58 59		
60		For Peer Review Only

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
20 50	

60

1

Antibiotic							
initiation-selection	initiation-duration	selection-duration	Substantial agreement	0.61 to 0.80			
0.05	0.06	0.06	Moderate agreement	0.41 to 0.60			
(0.03, 0.07)	03, 0.07) (0.04, 0.08) (0.04, 0.08)		Fair agreement	0.21 to 0.40			
			Slight agreement	0 to 0.20			
Opioid		No agreement	0				
Initiation-selection	Initiation-duration	selection-duration	Slight disagreement	0 to -0.20			
0.16	0.15	0.18	Fair disagreement	-0.21 to -0.40			
(0.14, 0.18)	3) (0.13, 0.17) (0.16, 0.20)		Moderate disagreement	-0.41 to -0.60			
			Substantial disagreemen	t -0.61 to -0.80			

Figure 2. Concordance between suboptimal antibiotic and opioid prescribing metrics (within class) kappa (95% CI)

338x190mm (72 x 72 DPI)

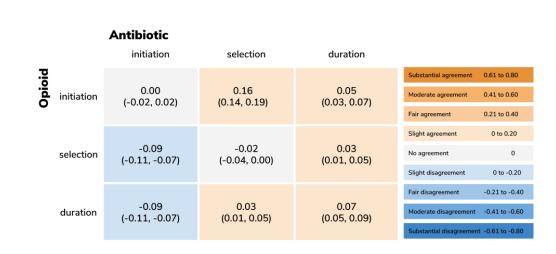


Figure 3. Concordance between suboptimal antibiotic and opioid prescribing metrics (cross opioid-antibiotic class) kappa (95% CI)

338x190mm (72 x 72 DPI)