

Temporal-Spatial Case-Crossover Analysis of the Effect of Air Pollution on Myocardial Infarction

Journal:	CMAJ Open
Manuscript ID	CMAJOpen-2019-0160
Manuscript Type:	Other
Date Submitted by the Author:	19-Sep-2019
Complete List of Authors:	Liu, Xiaoxiao; University of Calgary, Community Health Science Bertazzon, Stefania; University of Calgary, Geography Villeneuve, Paul; Carleton University, Health Sciences Johnson, Markey; Health Canada Stieb, Dave; Health Canada, Environmental Health Science and Research Bureau Coward, Stephanie; University of Calgary, Medicine and Community Health Sciences Tanyingoh, Divine; University of Calgary, Medicine Windsor, Joseph; University of Calgary, Medicine and Community Health Sciences Underwood, Fox; University of Calgary, Medicine and Community Health Sciences Hill, Michael; University of Calgary, Medicine and Community Health Sciences Hill, Michael; University of Calgary, Clinical Neurosciences Rabi, Doreen; University of Calgary, Medicine, Community Health, and Cardiac Sciences Ghali, William Amin; University of Calgary, Medicine and Community Health Sciences Wilton, Stephen; University of Calgary, Cardiac Sciences James, Matthew; University of Calgary, Medicine Graham, Michelle; University of Alberta, Medicine McMurtry, M.; University of Alberta, Medicine Kaplan, Gilaad; University of Calgary, Medicine and Community Health Sciences
More Detailed Keywords:	myocardial infarction, air pollution, spatial variation, land use regression
Keywords:	Cardiac disease-coronary, Environment
Abstract:	Background: Studies demonstrating associations between air pollution and myocardial infarction have not adequately considered the inherent intra-urban spatial nature of air pollution. We examined the effects of temporal and spatial distribution of air pollution on myocardial infarction. Methods: We identified adults living in Calgary who had a myocardial infarction from 2004–2012 (n=6,142). We evaluated associations between acute exposure to air pollution (ozone [O3], nitrogen dioxide

[NO2], sulfur dioxide [SO2], carbon monoxide [CO], particulate matter<10 microns in diameter [PM10], and particulate matter<2.5 microns in diameter [PM2.5]), and onset of myocardial infarction using a time-stratified, case-crossover study design. Air Quality Health Index (AQHI) values were calculated from a composition of O3, NO2, and PM2.5. Conditional logistic regression models were stratified by neighborhood exposure to NO2 concentrations derived from land use regression models. Results are provided as odds ratios (OR) with associated 95% confidence intervals (CI).
Results: Individuals living in neighborhoods with higher exposure to air pollution were more susceptible to myocardial infarction following acute elevations in air pollution (e.g., five-day average NO2: OR:1.20; 95% CI:1.03, 1.40 per interquartile range (IQR)) as compared to regions with lower air pollution (e.g., five-day average NO2: OR:0.90; 95% CI:0.78, 1.04 per IQR). In high NO2 regions the AQHI was significantly associated with MI (e.g. five-day average OR:1.13; 95% CI:1.02, 1.24 per IQR; three-day average OR:1.13; 95% CI:1.04, 1.23 per IQR). Interpretation: Those who live in neighborhoods with chronically higher concentrations of NO2 are more susceptible to myocardial infarction with
short-term increases of air pollution.

SCHOLARONE[™] Manuscripts

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Reported on Page #
Title and abstract	1	(a) Indicate the study's design with a commonly	1,3
		used term in the title or the abstract	
		(b) Provide in the abstract an informative and	3
		balanced summary of what was done and what was	
		found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for	4
		the investigation being reported	
Objectives	3	State specific objectives, including any prespecified	4-5
		hypotheses	
Methods			
Study design	4	Present key elements of study design early in the	6
		paper	
Setting	5	Describe the setting, locations, and relevant dates,	5,6
		including periods of recruitment, exposure, follow-	
		up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and	6,7
		the sources and methods of selection of participants.	
		Describe methods of follow-up	
		Case-control study—Give the eligibility criteria,	
		and the sources and methods of case ascertainment	
		and control selection. Give the rationale for the	
		choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria,	
		and the sources and methods of selection of	
		participants	
		(b) Cohort study—For matched studies, give	6,7
		matching criteria and number of exposed and	
		unexposed	
		Case-control study—For matched studies, give	
		matching criteria and the number of controls per	
		case	
Variables	7	Clearly define all outcomes, exposures, predictors,	5-7
		potential confounders, and effect modifiers. Give	
		diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data	5,6
measurement		and details of methods of assessment	
		(measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of	7

Study size		10	Explain how the study size was arrived at	5
Quantitative variables		11	Explain how quantitative variables were handled in	7
		11	the analyses. If applicable, describe which	,
			groupings were chosen and why	
Statistical methods	,	12	(<i>a</i>) Describe all statistical methods, including those	7
Statistical methods	•	12	used to control for confounding	1
			(b) Describe any methods used to examine	7
			subgroups and interactions	1
			(c) Explain how missing data were addressed	7
				6,7
			(<i>d</i>) <i>Cohort study</i> —If applicable, explain how loss to follow-up was addressed	0,7
			-	
			<i>Case-control study</i> —If applicable, explain how	
			matching of cases and controls was addressed	
			Cross-sectional study—If applicable, describe	
			analytical methods taking account of sampling	
			strategy	
			(e) Describe any sensitivity analyses	7
Results				
Participants	13*		port numbers of individuals at each stage of study—eg	8
		numbe	rs potentially eligible, examined for eligibility,	
		confirm	ned eligible, included in the study, completing	
		follow	-up, and analysed	
		(b) Giv	re reasons for non-participation at each stage	
		(c) Cor	nsider use of a flow diagram	
Descriptive data	14*	(a) Giv	e characteristics of study participants (eg	8, Table 1
		demog	raphic, clinical, social) and information on exposures	
		and po	tential confounders	
		(b) Ind	icate number of participants with missing data for	n/a
		each va	ariable of interest	
		(c) <i>Col</i>	hort study—Summarise follow-up time (eg, average	n/a
		and tot	al amount)	
Outcome data	15*	Cohort	t study—Report numbers of outcome events or	8
		summa	ry measures over time	
		Case-c	ontrol study—Report numbers in each exposure	
		catego	ry, or summary measures of exposure	
		Cross-	sectional study—Report numbers of outcome events	
		or sum	mary measures	
Main results	16	(a) Giv	e unadjusted estimates and, if applicable,	8, Table 2
			nder-adjusted estimates and their precision (eg, 95%	
			ence interval). Make clear which confounders were	
			d for and why they were included	
			port category boundaries when continuous variables	8
			ategorized	
			-	

		(c) If relevant, consider translating estimates of relative risk	n/a
		into absolute risk for a meaningful time period	11/ a
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	8, Table 2
Discussion			
Key results	18	Summarise key results with reference to study objectives	8,9
Limitations	19	Discuss limitations of the study, taking into account sources	9, 10
		of potential bias or imprecision. Discuss both direction and	
		magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering	9, 10
		objectives, limitations, multiplicity of analyses, results from	
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study	9, 10
		results	
Other information	n		
Funding	22	Give the source of funding and the role of the funders for the	2
		present study and, if applicable, for the original study on	
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

1 2		
2 3 4	1	Temporal-Spatial Case-Crossover Analysis of the Effect of Air Pollution on
5 6	2	Myocardial Infarction
7 8 9	3	Xiaoxiao Liu PhD ^{1,2} , Stefania Bertazzon PhD ^{2,3} , Paul J. Villeneuve PhD ^{4,5} , Markey Johnson
10 11	4	PhD ⁶ , Dave Stieb MD ⁷ , Stephanie Coward PhD ^{1,8} , Divine Tanyingoh MSc ^{1,8} , Joseph W.
12 13	5	Windsor PhD ^{1,8} , Fox Underwood MSc ^{1,8} , Michael D. Hill MD ^{8,9} , Doreen Rabi MD ^{1,8} , William
14 15	6	A. Ghali MD ^{1,8} , Stephen B. Wilton MD ^{8,10} , Matt T. James MD ^{1,8} , Michelle Graham MD ¹¹ , M.
16 17 18	7	Sean McMurtry MD ^{11,12} , and Gilaad G. Kaplan MD ^{1,8} *
19 20	8	¹ Department of Community Health Sciences, University of Calgary, Calgary, Alberta,
21 22	9	Canada.
23 24	10	² Department of Geography, University of Calgary, Calgary, Alberta, Canada.
25 26	11	³ Department of History, Archaeology, Geography, Fine & Performing Arts, University of
27 28	12	Florence, Florence, Italy.
29 30 31	13	⁴ School of Mathematics and Statistics, Carleton University, Ottawa, Canada.
32 33	14	⁵ CHAIM Research Centre, Carleton University, Ottawa, Canada.
34 35	15	⁶ Air Health Science Division, Health Canada, Ottawa, Ontario, Canada.
36 37	16	⁷ Environmental Health Science and Research Bureau, Health Canada, Vancouver, British
38 39	17	Columbia, Canada.
40 41	18	⁸ Department of Medicine, University of Calgary, Calgary, Alberta, Canada.
42 43	19	⁹ Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
44 45	20	¹⁰ Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada.
46 47 48	21	¹¹ Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
48 49 50	22	¹² Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada.
51 52	23	
53 54	24	
55 56		
57 58		
59 60		

1 2		2 of 17
3	25	* Correspondence: Gilaad Kaplan, MD, MPH, FRCPC
4 5	26	Teaching Research and Wellness Building, 3D03-18
6	27	3280 Hospital Drive NW
7	28	Calgary, Alberta, T2N 4Z6, Canada
8 9	29	Tel: 403-220-2293, Fax: 403-270-7307
10	30	Email: ggkaplan@ucalgary.ca
11 12 13	31	
14 15	32	Authors' contributions: Study design (XL, SB, PJV, MJ, DS, MH, DR, MG, MSM, GGK),
16 17	33	data collection (XL, SB, MJ, DR, MH, WG, SW, MTJ, GGK), data analysis (XL, SB, PJV,
18 19 20	34	MJ, SC, DT, GGK), data interpretation (XL, SB, PJV, MJ, DS, SC, DT, MH, DR, WG, SW,
20 21 22	35	MTJ, MG, MSM, JWW, FU, GGK), and manuscript writing or editing (XL, SB, PJV, MJ, DS,
23 24	36	SC, DT, JWW, FU, MH, DR, WG, SW, MTJ, MG, MSM, GGK). All authors have seen and
25 26	37	approved the manuscript. GGK had full access to all of the data in the study and takes
27 28	38	responsibility for the integrity of the data and the accuracy of the data analysis.
29 30 31	39	Acknowledgment: GGK is a CIHR Embedded Clinician Research Chair.
32 33	40	Source of funding: Canadian Institutes of Health Research Operating Grant (Funding
34 35 36	41	Reference Number 133485) and Health Canada.
37 38	42	Competing interests: None of the authors have relevant conflict of interests to declare.
39 40	43	Declaration of competing financial interests: The authors declare they have no actual or
41 42 43	44	potential competing financial interests.
44 45	45	Writing assistance: None.
46 47 48	46	Word Count (Abstract): 252.
49 50 51	47	Word Count (Body of Manuscript): 2043.
52 53	48	Keywords: myocardial infarction; air pollution; spatial variation; time-stratified; land use
54 55 56 57 58	49	regression model; susceptible population.
59		

50 Abstract

Background: Studies demonstrating associations between air pollution and myocardial 52 infarction have not adequately considered the inherent intra-urban spatial nature of air 53 pollution. We examined the effects of temporal and spatial distribution of air pollution on 54 myocardial infarction.

Methods: We identified adults living in Calgary who had a myocardial infarction from 2004-2012 (n=6,142). We evaluated associations between acute exposure to air pollution (ozone [O₃], nitrogen dioxide [NO₂], sulfur dioxide [SO₂], carbon monoxide [CO], particulate matter<10 microns in diameter [PM₁₀], and particulate matter<2.5 microns in diameter [PM_{2.5}]), and onset of myocardial infarction using a time-stratified, case-crossover study design. Air Quality Health Index (AQHI) values were calculated from a composition of O_{3} , NO₂, and PM_{2.5}. Conditional logistic regression models were stratified by neighborhood exposure to NO₂ concentrations derived from land use regression models. Results are provided as odds ratios (OR) with associated 95% confidence intervals (CI).

Results: Individuals living in neighborhoods with higher exposure to air pollution were more susceptible to myocardial infarction following acute elevations in air pollution (e.g., five-day average NO₂: OR:1.20; 95% CI:1.03, 1.40 per interquartile range (IQR)) as compared to regions with lower air pollution (e.g., five-day average NO₂: OR:0.90; 95% CI:0.78, 1.04 per IQR). In high NO₂ regions the AQHI was significantly associated with MI (e.g. five-day average OR:1.13; 95% CI:1.02, 1.24 per IQR; three-day average OR:1.13; 95% CI:1.04, 1.23 per IQR).

Interpretation: Those who live in neighborhoods with chronically higher concentrations of
 NO₂ are more susceptible to myocardial infarction with short-term increases of air pollution.

73 Introduction

Atherosclerotic coronary artery disease remains a common cause of morbidity and mortality.¹ Despite improvements in risk factor burden² and management,³ over 36,000 Canadians die annually from myocardial infarctions (MI).⁴ MI is modified by several risk factors including smoking cigarettes, dyslipidemia, hypertension, diabetes, abdominal obesity, diet, socioeconomic status, and insufficient physical activity.5-6 Studies have consistently demonstrated that short-term elevations in air pollution concentrations increase the risk of MI.7-9 Improving our understanding of the effects of acute exposure to air pollution on MI may inform government policy and facilitating prevention by warning populations at risk.

In Calgary, the major contributor to air pollution is transportation for nitrogen dioxide (NO₂) and carbon monoxide (CO); construction for particulate matter < 10 microns in diameter (PM₁₀), and particulate matter < 2.5 microns in diameter (PM_{2.5}); and, cement and rock industries for sulfur dioxide (SO₂)¹⁰; the relatively higher air pollution regions are mainly distributed along major traffic corridors and close to industrial areas.¹¹⁻¹² Air pollution exposure studies relying on the average of air pollution ignore the inherent spatial nature of air pollution.¹³⁻¹⁴

Historically, temporal analyses exploring the association between air pollution and health outcomes have assumed that pollutants are spatially homogeneous.¹⁵⁻¹⁸ However, research has demonstrated that spatial distribution patterns differ by pollutant.¹⁹ For example, it is widely recognized that ozone (O_3) is relatively spatially homogenous due to consistent concentration levels and temporal fluctuations, while NO_2 is spatially heterogeneous because it is attributable to traffic emissions. Using city-wide averages as air pollution estimates fails to consider the spatial variation within a city.¹⁸

97 The objective of this study is to evaluate if the spatial distribution of air pollution 98 influences the temporal associations between air pollution and MI. By integrating spatial 99 variation captured by an NO₂ land use regression (LUR) model with temporal analysis, our 100 study aims to assess the association of short-term elevations in air pollution with the risk of

101 MI in regions with different air pollution levels and to identify populations that may be at 102 increased susceptibility.

103 Methods

104 Clinical data

The Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) is a registry that captures all patients undergoing cardiac catheterization in the province of Alberta since January 1, 1995 (see www.approach.org). In 2004, APPROACH expanded to include the Heart Alert initiative in Southern Alberta, which enhances data collection by including detailed information on all patients admitted to cardiology services of acute care facilities in Calgary. Because the data collection is prospective, missing data on key variables are minimal. Our population was comprised of adults over the age of 18 years at the time of incidence, living in Calgary during the study period, January 1, 2004 to December 31, 2012. The population was extracted by first acute MI diagnosis, including ST elevation MI and non-ST elevation MI.

³⁴₃₅ 115 Air pollution and meteorological data from fixed monitoring sites

Air pollution data were obtained from automated fixed-site continuous monitoring stations maintained by Environment and Climate Change Canada as part of the National Air Pollution Surveillance Network.²⁰⁻²² The three stations were Calgary Central, Calgary East, and Calgary Northwest; they provided hourly concentrations of the six air pollutants investigated in this study: O₃, NO₂, SO₂, CO, PM₁₀, and PM_{2.5}. Daily air pollution levels were calculated from hourly records by averaging across the three fixed monitoring stations.^{8,23} For all air pollutants, with the exception of ozone, daily mean exposure estimates were used. Ozone values were based on an eight-hour maximum value. Additionally, Air Quality Health Indices (AQHI) were calculated from a composition of three-hour average values of O₃, NO₂, and $PM_{2.5}$ based on the formula²⁴:

AQHI

 $= 10/10.4 * (100 * (\exp (0.000871 * NO_2) - 1 + \exp (0.000537 * O_3) - 1 + \exp (0.000487 * PM_{2.5}) - 1))$

6 of 17

Data for daily mean temperature and relative humidity were provided by Environment and Climate Change Canada, which averaged the hourly mean temperature and relative humidity across the monitoring stations. These daily time series of meteorological data were linked with MI hospitalizations and used as adjustment factors in a multivariable conditional logistic regression model.

Spatial classification based on NO₂ estimates from an LUR model

LUR models have been widely used to assess the spatial variation of outdoor air pollution and to estimate fine scale pollution concentrations.²⁵⁻²⁸ Significant intra-urban variation for NO₂, PM_{2.5}, and metals associated with PM_{1.0} has been observed in previous analyses conducted on air pollution with LUR models in Calgary.^{11,29} These previous studies suggest that the major contributors to the spatial variation of air pollution are emissions from motor vehicles and industrial sources,³⁰ resulting in relatively higher air pollution along major traffic corridors and the northeast industrial areas.¹¹⁻¹² Temporal stability of LUR over time has been previously validated.³¹ Further, the LUR model used in Calgary was shown to remain stable over a five year interval.³² We used the NO₂ estimates from the air pollution study reported in Bertazzon et al. (2015) for the study period,¹¹ and divided the city into three levels based on ambient NO₂ concentrations: low NO₂ pollution (first tertile), medium NO₂ pollution (second tertile), and high NO₂ pollution (third tertile) (Figure 1). MI patients were assigned to each of the three areas based on the six-digit postal codes of their residential locations.

Study design

We used a time-stratified, case-crossover study design to evaluate associations between an acute exposure and the acute onset of a disease³³⁻³⁴; this is an adaptation of the case-control study in which cases serve as their own controls.³⁵ Because within-individual comparisons are being made, confounding from time-independent risk factors is controlled for by the design of the study. The case-crossover study design has been shown to effectively control for confounders that are relatively stable in time.³⁶ The case's exposure at the index time (*i.e.*, day of admission for MI) is compared to their exposure at control time intervals, which

Page 11 of 22

are chosen using a time-stratified design.³⁷ The time-stratified selection of periods occurs as follows: i. The index period is measured before the event; ii. the control period is measured before and after the event.³⁸⁻⁴⁰ The time-stratified approach matches the exposure by day of the week and month to control for the influence of day-of-week effects. It also adjusts for seasonal trends in exposure levels.⁴⁰ The time-stratified approach is not subject to bias resulting from time trends, because there is no pattern in the placement of referents relative to the index time.^{36-37,41}

18 163 Statistical analysis
19

To examine the temporal relationship between outdoor air pollution levels (O₃, NO₂, SO₂, CO, PM₁₀, PM_{2.5}, and AQHI) and presentation to hospitals due to MI, we constructed several different metrics: same day exposure, one- and two-day lagged exposures, and cumulative three-day and five-day average exposure estimates. Correlation between pollutants was assessed using Pearson correlation coefficients. After matching the case period and referent periods, we used conditional logistic regression to produce risk estimates by comparing exposure data on case and control days. Odds ratios (OR) with associated 95% confidence intervals (CI) were calculated to evaluate the association between MI hospitalizations and any increase in the interquartile range (IQR) of the daily concentrations of air pollutants during the different time intervals. We adjusted ORs for temperature and relative humidity.^{8,20,42} Temperature and relative humidity were entered as linear terms in models. We verified the linearity of the relationship using natural cubic spline functions. The AQHI was also included in the model to explore the composite effects of air pollution on MI. Finally, each pollutant model (O₃, NO₂, SO₂, CO, PM₁₀, PM_{2.5}, and the AQHI) was stratified by an individual's neighborhood exposure to NO₂ concentrations (stratified as high, medium, and low), as derived from LUR models.

The study was approved by University of Calgary and Health Canada Research Ethics
 181 Boards.

59 182 Results60

8 of 17

We identified 6,142 adult patients admitted to hospital due to MI during the study period (Table 1). Males were 73% of the MI population; patients aged 65 or under account for 52%; patients with diabetes were 24%; and, 59% were either a current or a former smoker. When stratified by residential location, 23% of MI patients reside in areas of relatively high NO₂ pollution. The distribution of air pollutants (e.g. median, IQR) and their correlation to each other are provided in Appendix 1.

Associations between air pollution and MI are shown in Table 2. For the overall city-wide study population, only SO₂, lag 1 day exhibited a statistically significant positive association with MI (OR: 1.049; 95% CI: 1.007, 1.093 per IQR). Associations between pollutants and MI were primarily observed for those residing in areas in the highest tertile of NO_2 . Significant with the exception of O_3 , all pollutants were associated with MI in high NO_2 areas with the ORs ranging from 1.06 to 1.20 per IQR. The strongest effect on MI was identified for five-day cumulative average of NO_2 (OR: 1.20; 95% CI: 1.03, 1.40 per IQR). In high NO₂ regions the AQHI was significantly associated with MI (five-day average OR: 1.13; 95% CI: 1.02, 1.24 per IQR; three-day average OR: 1.13; 95% CI: 1.04, 1.23 per IQR).

198 Interpretation

We evaluated the associations between air pollution and risk of MI with a time-stratified, case-crossover study design. Our analysis was consistent with Wang et al. (2015) who also explored the effects of air pollution on MI in Calgary.²³ Neither that study nor ours identified strong effects of air pollution on MI when assuming that the spatial distribution of air pollution was homogenous across the city of Calgary. The weak association between air pollution and MI in our non-spatially stratified analyses may partially be explained by the generally low air pollution concentrations in Calgary, where warning advisories were issued for fewer than 1% of days annually during our study period.43 Environment and Climate Change Canada (2015) reported that air pollution (NO₂, SO₂, O₃, and CO) has dramatically improved, including in Calgary, from 1990 to 2015.⁴⁴ In part, improved air quality in Calgary may also explain the decrease incidence of MI in Calgary observed by Liu and Bertazzon (2017) between 2004 and 2013.12

However, unique to our study, we stratified our models by spatial distribution of NO₂. Individuals living in regions of high NO₂ exposure demonstrated significant associations for all individual pollutants and MI with the exception of O_3 . Further, the AQHI was also associated with MI for patients living in areas with higher NO_2 concentrations. These results highlight the importance of accounting for spatial variation when studying the health effects of air pollution.

Associations between SO₂ and MI are consistently reported in the literature. Mustafic et al. (2012) provide a systematic review concluding that SO_2 was positively associated with increased MI.⁹ Our results also align with previous studies that report that O₃ has no association with MI hospitalizations.9,23,45 As well, our results suggest that NO2 and PM2.5 levels are associated with increased MI in areas of medium NO₂ (PM_{2.5} only) and areas of high NO₂ (both NO₂ and PM_{2.5}); which is aligned with previous studies that find a positive association between MI and NO₂ and PM_{2.5}.9,42

The AQHI, as a composite score indicating the overall air quality, did not exhibit a positive association with MI except in areas of high NO₂. However, most evidence to date indicates that the effects of air pollution are linear, particularly for O₃ and PM_{2.5}, such that detection of effects is not dependent on infrequent days with high pollutant concentrations.⁴⁶⁻ ⁴⁷ The AQHI is calculated based on the combination of NO₂, O₃, and PM_{2.5}, of which O₃ exhibited no significant associations with MI among either the entire study population or any subgroups, while NO₂ and PM_{2.5} exhibited significant associations in our spatial stratification. A limitation of our study is in using fixed-site monitoring data rather than personal monitoring. Fixed-site monitoring is subject to misclassification of the exposure because fixed-site monitors do not account for individual mobility; this could result in non-differential exposure misclassification, which may underestimate the risk of air pollution.^{40,48} Results of the current study support further investigation of whether living in a high pollution area increases vulnerability to temporal spikes in pollution concentrations. However, this should be interpreted with caution because high pollution areas may correspond with other risk factors for MI such as low socioeconomic status and obesity. Misclassification of timing of onset of myocardial infarction may introduce bias into the results. Multiple comparison errors
may account for some of the statistically significant associations observed and thus,
replication studies are necessary.

We examined the effects of increased air pollution on the increased odds of MI by integrating spatial variation in air pollution derived from NO_2 LUR models. Our results showed that the effect of air pollution on MI was stronger in areas with higher NO concentrations than areas with lower NO_2 concentrations. These results highlight the need for preventive strategies targeted specifically to populations living in residential areas with higher traffic-related pollution, who should be advised of the health risks and to pay particular attention to special air quality statements.

2		11 of 17
3	250	References
4	230	Reierences
5	251	1. Lopez AD, Mathers CD, Ezzati M, et al. Global and regional burden of disease and risk
6	252	factors, 2001: systematic analysis of population health data. Lancet 2006;367:1747–
7	253	1757. Available: https://doi.org/10.1016/S0140-6736(06)68770-9 (accessed 2019 July
8	254	29).
9	255	2. Gregg EW, Cheng YJ, Cadwell BL, et al. Secular Trends in Cardiovascular Disease
10	256	Risk Factors According to Body Mass Index in US Adults. JAMA 2005;293:1868.
11	257	Available: https://doi.org/10.1001/jama.293.15.1868 (accessed 2019 July 29).
12	258	3. Ford ES, Ajani UA, Croft JB, et al. Explaining the Decrease in U.S. Deaths from
13	259	Coronary Disease, 1980–2000. Engl J Med 2007;356:2388–2398. Available:
14	260	https://www.nejm.org/doi/full/10.1056/NEJMsa053935 (accessed 2019 July 29).
15 16	261	4. Statistics Canada. Table 102-0561 - Leading causes of death, total population, by age
17	262	group and sex, Canada, annual, CANSIM (database). Statistics Canada;2018.
17	263	5. Ford ES, Li C, Zhao G, et al. Trends in the prevalence of low risk factor burden for
19	264	cardiovascular disease among United States adults. <i>Circulation</i> 2009;120:1181–1188.
20	265	Available: https://doi.org/10.1161/CIRCULATIONAHA.108.835728 (accessed 2019
21	266	July 29).
22	267	6. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors
23	268	associated with myocardial infarction in 52 countries (the INTERHEART study): case-
24	269	control study. Lancet 2004;364:937–952. Available: https://doi.org/10.1016/S0140-
25	270	6736(04)17018-9 (accessed 2019 July 25).
26	271	7. Dominici F, Peng RD, Bell ML, et al. Fine Particulate Air Pollution and Hospital
27	272	Admission for Cardiovascular and Respiratory Diseases. JAMA 2006;295:1127.
28	273	Available: https://doi.org/10.1001/jama.295.10.1127 (accessed 2019 July 29).
29	274	8. Villeneuve PJ, Chen L, Rowe BH, et al. Outdoor air pollution and emergency
30	275	department visits for asthma among children and adults: A case-crossover study in
31	276	northern Alberta, Canada. Environ Heal 2007;6:40. Available:
32	277	https://doi.org/10.1186/1476-069X-6-40 (accessed 2019 July 25).
33 34	278	9. Mustafic H, Jabre P, Caussin C, et al. Main Air Pollutants and Myocardial Infarction. J
35	279	Am Med Assoc Rev 2012;307:713–721.
36	280	10. CRAZ. All Source Pollutant Emissions Inventory for the Calgary Region Airshed Zone
37	281	(CRAZ) – Spatial Allocation Project (2012 – 2013) (Final Draft). Calgary Region
38	282	Airshed Zone;2013.
39	283	11. Bertazzon S, Johnson M, Eccles K, et al. 2015. Accounting for spatial effects in land
40	284	use regression for urban air pollution modeling. Spat Spatiotemporal Epidemiol
41	285	2015;14–15:9–21. Available: https://doi.org/10.1016/j.sste.2015.06.002 (accessed
42	286	2019 July 25).
43	287	12. Liu X, Bertazzon S. Fine Scale Spatio-Temporal Modelling of Urban Air Pollution. In:
44	288	Miller AJ, O'Sullivan D, Wiegand N. (editors). Geographic Information Science: 9th
45	289	International conference of GIScience; 2016 September 27–30; Montreal (Canada):
46	290	Springer International Publishing, Cham, pp. 210–224. Available:
47	291	https://doi.org/10.1007/978-3-319-45738-3_14 (accessed 2019 July 25).
48 40	292	13. Jerrett M, Burnett, RT, Ma R, et al. Spatial analysis of air pollution and mortality in Los
49 50	293	Angeles. <i>Epidemiology</i> 2005;16(6):727–736.
50 51	294	14. Basagaña X, Aguilera I, Rivera M, et al. Measurement error in epidemiologic studies of
52	295	air pollution based on land-use regression models. <i>Am J Epidemiol</i> 2013;178:1342–6.
53	296	Available: https://doi.org/10.1093/aje/kwt127 (accessed 2019 July 25).
54	297	15. D'Ippoliti D, Forastiere F, Ancona C, et al. Air pollution and myocardial infarction in
55	298	Rome: a case-crossover analysis. <i>Epidemiology</i> 2003;14:528–35. Available:
56	299	https://doi.org/10.1097/01.ede.0000082046.22919.72 (accessed 2019 July 25).
57	300	16. Ruidavets JB, Cournot M, Cassadou S, et al. Ozone air pollution is associated with
58	301	acute myocardial infarction. <i>Circulation</i> 2005;111:563–9. Available:
59	302	https://doi.org/10.1161/01.CIR.0000154546.32135.6E (accessed 2019 July 25).
60	303	17. Lanki T, Pekkanen J, Aalto P, et al. Associations of traffic related air pollutants with
	304	hospitalisation for first acute myocardial infarction: the HEAPSS study. Occup Environ

1 2		12 of 17
3	305	Med 2006;63:844–51. Available: https://doi.org/10.1136/oem.2005.023911 (accessed
4 5	306	2019 July 25).
6	307	18. Gryparis A, Paciorek CJ, Zeka A, et al. Measurement error caused by spatial
7	308	misalignment in environmental epidemiology. <i>Biostatistics</i> 2009;10:258–74.
8	309	https://doi.org/10.1093/biostatistics/kxn033 (accessed 2019 July 25).
9	310	19. Sarnat S, Klein M, Sarnat J, et al. An examination of exposure measurement error from
10	311	air pollutant spatial variability in time-series studies. Expo Sci Env Epidemiol
11	312	2010;20:135–146.
12	313	20. Kaplan GG, Dixon E, Panaccione R, et al. Effect of ambient air pollution on the
13	314	incidence of appendicitis. CMAJ 2009;181:591–597. Available:
14	315	https://doi.org/10.1503/cmaj.082068 (accessed 2019 July 25).
15	316	21. Kaplan GG, Tanyingoh D, Dixon E, et al. Ambient Ozone Concentrations and the Risk
16 17	317	of Perforated and Nonperforated Appendicitis: A Multicity Case-Crossover Study.
17 18	318	Environ Health Perspect 2013;121:939–943.
10	319	22. NAPS. National Air Pollution Surveillance (NAPS) Network. National Air Pollution
20	320	Surveillance;2018. Available: https://open.canada.ca/data/en/dataset/1b36a356-defd-
21	321 322	4813-acea-47bc3abd859b (accessed 2019 July 25).
22	322 323	23. Wang X, Kindzierski W, Kaul P, et al. Air pollution and acute myocardial infarction
23	323 324	hospital admission in Alberta, Canada: A three-step procedure case-crossover study. PLoS One 2015;10:1–15. Available: https://doi.org/10.1371/journal.pone.0132769
24	324	(accessed 2019 July 25).
25	326	24. Stieb DM, Burnett RT, Smith-Doiron M, et al. A New Multipollutant, No-Threshold Air
26	320	Quality Health Index Based on Short-Term Associations Observed in Daily Time-
27	328	Series Analyses. J Air Waste Manage Assoc 2008;58:435–450. Available:
28	329	https://doi.org/10.3155/1047-3289.58.3.435 (accessed 2019 July 25).
29 30	330	25. Ryan PH, LeMasters GK. A review of land-use regression models for characterizing
31	331	intraurban air pollution exposure. <i>Inhal Toxicol</i> 2007;19(Suppl 1):127–133. Available:
32	332	https://doi.org/10.1080/08958370701495998 (accessed 2019 July 25).
33	333	26. Hoek G, Beelen R, de Hoogh K, et al. A review of land-use regression models to
34	334	assess spatial variation of outdoor air pollution. Atmos Environ 2008;42:7561–7578.
35	335	Available: https://doi.org/10.1016/j.atmosenv.2008.05.057 (accessed 2019 July 25).
36	336	27. Mercer LD, Szpiro AA, Sheppard L, et al. Comparing universal kriging and land-use
37	337	regression for predicting concentrations of gaseous oxides of nitrogen (NOx) for the
38	338	Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Atmos Environ
39	339	2011;45:4412–4420. Available: https://doi.org/10.1016/j.atmosenv.2011.05.043
40	340	(accessed 2019 July 25).
41 42	341	28. Wang M, Beelen R, Eeftens M, et al. Systematic evaluation of land use regression
42	342	models for NO ₂ . <i>Environ Sci Technol</i> 2012;46:4481–9. Available:
44	343	https://doi.org/10.1021/es204183v (accessed 2019 July 25).
45	344	29. Zhang JJY, Sun L, Barrett O, et al. Development of land-use regression models for
46	345	metals associated with airborne particulate matter in a North American city. Atmos
47	346	Environ 2015;106:165–177. Available: https://doi.org/10.1016/j.atmosenv.2015.01.008
48	347	(accessed 2019 July 25).
49	348	30. CRAZ. Calgary Region Airshed Zone 2013 Annual Report. Calgary Region Airshed
50	349 350	Zone;2013.
51 52	350	 Wang R, Henderson SB, Sbihi H, et al. Temporal stability of land use regression models for traffic-related air pollution. <i>Atmos Environ</i> 2013;64:312–319.
52 53	352	32. Bertazzon S, Couloigner I, Underwood FE. Spatial land use regression of nitrogen
55 54	352	dioxide over a 5-year interval in Calgary, Canada. Int J GIS 2019;33(7):1335-1354.
55	353	33. Peters A, Dockery DW, Muller JE, et al. Increase particulate air pollution and the
56	355	triggering of myocardial infarction. <i>Circulation</i> 2001;103:2810–2815.
57	356	34. Rich DQ, Schwartz J, Mittleman MA, et al. Association of Short-term Ambient Air
58	357	Pollution Concentrations and Ventricular Arrhythmias. Am J Epidemiol 2005;161:1123–
59	358	1132. Available: https://doi.org/10.1093/aje/kwi143 (accessed 2019 July 25).
60		

1 2		13 of 17
3	359	35. Maclure M. The Case-Crossover Design: A Method for Studying Transient Effects on
4 5	360	the Risk of Acute Events. Am J Epidemiol 1991;133:144–153. Available:
5 6	361	https://doi.org/10.1093/oxfordjournals.aje.a115853 (accessed 2019 July 25).
7	362	36. Schwartz J. The effects of particulate air pollution on daily deaths: a multi-city case
8	363	crossover analysis. Occup Env Med 2004;61:956–961. Available:
9	364	https://doi.org/10.1136/oem.2003.008250 (accessed 2019 July 25).
10	365	37. Janes H, Sheppard L, Lumley T. Case-crossover analyses of air pollution exposure
11	366 367	data: Referent selection strategies and their implications for bias. <i>Epidemiology</i> 2005;16:717–726. Available: https://doi.org/10.1097/01.ede.0000181315.18836.9d
12	368	(accessed 2019 July 25).
13 14	369	38. Bateson T, Schwartz J. Selection Bias and Confounding in Case-Crossover Analysis of
15	370	Environmental Time-Series Data. <i>Epidemiology</i> 2001;12:654–661.
16	371	39. Navidi W, Weinhandl E. Risk set sampling for case-crossover designs. <i>Epidemiology</i>
17	372	2002;13:100–105. https://doi.org/10.1097/00001648-200201000-00016.
18	373	40. Jaakkola JJK. Case-crossover design in air pollution epidemiology. Eur Respir J Suppl
19	374	2003;40:81-85. Available: https://doi.org/10.1183/09031936.03.00402703 (accessed
20	375	2019 July 25).
21 22	376	41. Levy D, Lumley T, Sheppard L, et al. Referent selection in Case-Crossover Analyses
23	377	of Acute Health Effects of Air Pollution. <i>Epidemiology</i> 2001;12:186–192.
24	378	42. Bhaskaran K, Hajat S, Armstrong B, et al. 2011. The effects of hourly differences in air
25	379	pollution on the risk of myocardial infarction: case crossover analysis of the MINAP
26	380 381	database. <i>BMJ</i> 2011;343. Available: https://doi.org/10.1136/BMJ.D5531 (accessed 2019 July 25).
27	382	43. Daley S. Analysis of the air quality health index in Canadian urban centres.
28	383	Environment and Climate Change Canada 2010. Available:
29 30	384	https://www.cfpc.ca/uploadedFiles/Directories/Committees_List/AQHI_Analysis_2001-
31	385	2009_compatible.pdf (accessed 2019 July 25).
32	386	44. Environment and Climate Change Canada. Air pollution emission inventory report.
33	387	Environment and Climate Change Canada;2015.
34	388	45. Vidale S, Arnaboldi M, Bosio V, et al. Short-term air pollution exposure and
35	389	cardiovascular events: A 10-year study in the urban area of Como, Italy. Int J Cardiol
36	390	2017;248:389–393. Available: https://doi.org/10.1016/j.ijcard.2017.06.037 (accessed
37	391	2019 July 25).
38 39	392	46. Newell K, Kartsonaki C, Lam KBH, et al. Cardiorespiratory health effects of gaseous
40	393 394	ambient air pollution exposure in low and middle income countries: a systematic review
41	394 395	and meta-analysis. <i>Environ Health</i> 2018;17:41. Available: https://doi.org/10.1186/s12940-018-0380-3 (accessed 2019 September 17).
42	396	47. WHO. WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and
43	397	sulfur dioxide: global update 2005: summary of risk assessment. World Health
44	398	Organization;2006. Available:
45 46	399	https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/ (accessed 2019
40	400	September 17).
48	401	48. Bell ML, Peng RD, Dominici F. The exposure-response curve for ozone and risk of
49	402	mortality and the adequacy of current ozone regulations. Environ Health Perspect
50	403	2006;114:532–6. Available: https://doi.org/10.1289/EHP.8816 (accessed 2019 July
51	404	25).
52	405	
53 54	406	
54 55	407	
56	+0/	
57	408	
58		
59		
60		

Figure Legend

Figure 1. Area stratified by average NO₂ from LUR estimates. Darker shading represents

- higher air pollution and lighter shading represents lower air pollution. Stars denote the
- three continuous monitoring stations in Calgary.

1 2				
3 4	414	Tables		
5 6	415	Table 1 Damagnaphian	of ML accountion	
7	416	Table 1. Demographics	Characteristics	n (%)
8 9			Total Population	6,142 (100%)
10			Sex	0,112(10070)
11 12			Male	4,482 (73%)
13			Female	1,660 (27%)
14 15			Age	
16			Age ≤ 65	3,209 (52%)
17 18			Age > 65	2,933 (48%)
19			Comorbidity	
20 21			No diabetes	4,649 (76%)
21			Diabetes	1,493 (24%)
23			Cigarette Smoking	
24 25			Never smoker	2,496 (41%)
26			Former smoker	1,798 (29%)
27 28			Current smoker	1,848 (30%)
29			Residential Location*	
30 31			Low NO ₂ air	1,660 (27%)
32			pollution (1st tertile)	
33			Medium NO_2 air	3,088 (50%)
34 35			pollution (2nd tertile) High NO ₂ air	
36			High NO ₂ air pollution (3rd tertile)	1,384 (23%)
37 38	417	*1		ata A
39	417 418	. I	0 patients with missing d	ala.
40 41	110			
42				
43 44				
44 45				
46				
47 48				
49				
50 51				
52				
53 54				
54 55				
56 57				
57				

Table 2. Association between air pollution and MI with increases in the interquartile range of pollutants during various referent time intervals, in regions with differing NO₂ pollution levels. Acronyms: ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particulate matter < 10 microns in diameter (PM10), and particulate matter < 2.5 microns in diameter (PM2.5). Significant associations are bolded. IQR: Interquartile Range.

		Odds Ratio ^a (95% Confidence Intervals)			
Pollutant (Median with Interquartile Range)	Lag (days)	Entire study population (city-wide NO_2) ($n = 6,142$)	Low NO ₂ region (<i>n</i> = 1,660)	Medium NO ₂ region (<i>n</i> = 3,088)	High NO ₂ region $(n = 1,384)$
	0 Index Day	0.972 (0.926, 1.022)	0.943 (0.881, 1.009)	0.970 (0.923, 1.019)	1.016 (0.947, 1.091)
22	1 Day Lag	1.029 (0.980, 1.080)	0.984 (0.919, 1.054)	1.020 (0.972, 1.070)	1.099 (1.022, 1.181)
CO	2 Day Lag	1.008 (0.959, 1.060)	1.025 (0.957, 1.097)	0.985 (0.937, 1.036)	1.039 (0.966, 1.117)
(0.35, IQR: 0.27, 0.47)	0-2 Day Average	1.006 (0.940, 1.076)	0.968 (0.881, 1.062)	0.985 (0.921, 1.054)	1.094 (0.993, 1.206)
	0-4 Day Average	0.974 (0.900, 1.054)	0.923 (0.826, 1.030)	0.956 (0.884, 1.034)	1.079 (0.961, 1.212)
	0 Index Day	1.003 (0.941, 1.070)	0.968 (0.887, 1.056)	1.008 (0.946, 1.075)	1.045 (0.951, 1.149)
NO ₂	1 Day Lag	1.040 (0.974, 1.109)	0.998 (0.911, 1.093)	1.007 (0.944, 1.074)	1.159 (1.054, 1.275)
(18.22, IQR: 12.67,	2 Day Lag	1.030 (0.966, 1.099)	1.030 (0.943, 1.124)	0.996 (0.934, 1.062)	1.109 (1.008, 1.220)
25.00)	0-2 Day Average	1.045 (0.957, 1.141)	0.996 (0.883, 1.123)	1.007 (0.923, 1.100)	1.197 (1.053, 1.361)
	0-4 Day Average	0.975 (0.878, 1.082)	0.902 (0.781, 1.042)	0.927 (0.836, 1.029)	1.200 (1.029, 1.400)
	0 Index Day	1.003 (0.954, 1.056)	1.024 (0.956, 1.098)	0.980 (0.932, 1.031)	1.031 (0.956, 1.111)
O ₃ max	1 Day Lag	0.992 (0.943, 1.044)	0.963 (0.898, 1.031)	0.974 (0.926, 1.025)	1.068 (0.989, 1.153)
(39.00, IQR: 32.00,	2 Day Lag	0.989 (0.940, 1.041)	0.972 (0.907, 1.041)	0.986 (0.937, 1.037)	1.016 (0.941, 1.097)
47.00)	0-2 Day Average	0.992 (0.930, 1.058)	0.977 (0.895, 1.067)	0.968 (0.908, 1.033)	1.062 (0.964, 1.170)
	0-4 Day Average	1.003 (0.930, 1.080)	0.999 (0.903, 1.106)	0.967 (0.898, 1.042)	1.087 (0.972, 1.216)
\$0	0 Index Day	1.002 (0.960, 1.045)	1.002 (0.947, 1.060)	0.969 (0.929, 1.011)	1.081 (1.016, 1.150)
SO ₂	1 Day Lag	1.049 (1.007, 1.093)	1.033 (0.977, 1.092)	1.039 (0.997, 1.083)	1.095 (1.031, 1.164
(1.00, IQR: 1.00, 2.00)	2 Day Lag	1.035 (0.994, 1.079)	1.037 (0.979, 1.098)	1.028 (0.987, 1.071)	1.051 (0.989, 1.117

			2 of 17		
	0-2 Day Average	1.059 (0.999, 1.122)	1.050 (0.970, 1.136)	1.025 (0.967, 1.087)	1.151 (1.058, 1.252)
	0-4 Day Average	1.045 (0.976, 1.119)	1.054 (0.961, 1.157)	1.020 (0.953, 1.092)	1.099 (0.994, 1.216)
PM ₁₀ 20.00, IQR: 14.00, 30.00)	0 Index Day	0.982 (0.947, 1.018)	0.948 (0.901, 0.999)	0.981 (0.947, 1.017)	1.026 (0.973, 1.082
	1 Day Lag	1.010 (0.974, 1.047)	0.968 (0.921, 1.018)	1.005 (0.970, 1.042)	1.064 (1.010, 1.120
	2 Day Lag	1.012 (0.976, 1.049)	0.992 (0.945, 1.041)	1.000 (0.964, 1.037)	1.058 (1.004, 1.116
	0-2 Day Average	1.002 (0.957, 1.050)	0.950 (0.891, 1.014)	0.993 (0.948, 1.040)	1.083 (1.013, 1.158
	0-4 Day Average	0.990 (0.938, 1.045)	0.945 (0.878, 1.018)	0.981 (0.930, 1.036)	1.066 (0.986, 1.153
PM _{2.5} (7.00, IQR: 4.33, 10.50)	0 Index Day	1.014 (0.977, 1.051)	0.994 (0.939, 1.053)	1.003 (0.968, 1.040)	1.055 (1.003, 1.109
	1 Day Lag	1.024 (0.987, 1.062)	0.980 (0.932, 1.031)	1.043 (1.005, 1.082)	1.044 (0.989, 1.101
	2 Day Lag	1.003 (0.964, 1.042)	0.955 (0.904, 1.010)	1.015 (0.974, 1.057)	1.030 (0.980, 1.083
	0-2 Day Average	1.020 (0.974, 1.068)	0.963 (0.902, 1.029)	1.029 (0.982, 1.078)	1.065 (0.999, 1.134
	0-4 Day Average	1.024 (0.969, 1.082)	0.982 (0.911, 1.059)	1.043 (0.986, 1.102)	1.037 (0.957, 1.123
AQHI (4.01, IQR: 3.49, 4.65)	0 Index Day	1.007 (0.963, 1.053)	0.998 (0.938, 1.062)	0.991 (0.948, 1.036)	1.058 (0.991, 1.130
	1 Day Lag	1.019 (0.974, 1.066)	0.968 (0.909, 1.030)	1.001 (0.957, 1.047)	1.119 (1.048, 1.195
	2 Day Lag	1.010 (0.965, 1.057)	0.988 (0.930, 1.051)	0.995 (0.951, 1.042)	1.066 (0.998, 1.140
	0-2 Day Average	1.020 (0.964, 1.080)	0.976 (0.903, 1.056)	0.996 (0.941, 1.054)	1.130 (1.041, 1.227
	0-4 Day Average	1.007 (0.942, 1.076)	0.973 (0.888, 1.066)	0.974 (0.911, 1.041)	1.127 (1.022, 1.243

^a Odds ratios are adjusted for temperature and relative humidity.

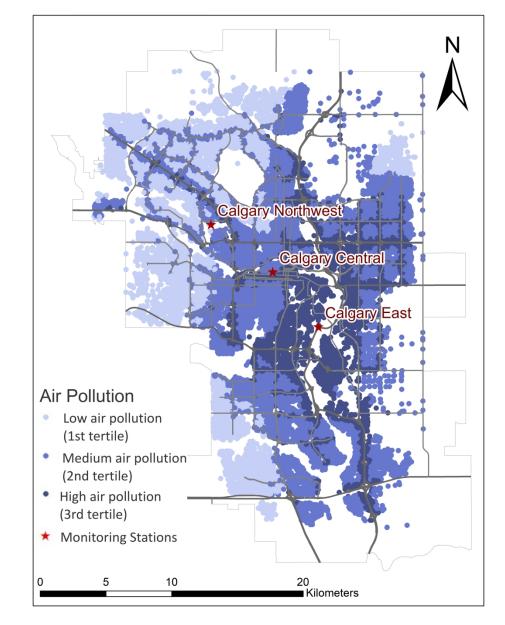


Figure 1. Area stratified by average NO2 from LUR estimates. Darker shading represents higher air pollution and lighter shading represents lower air pollution. Stars denote the three continuous monitoring stations in Calgary.

215x279mm (300 x 300 DPI)

59	
60	

For Peer Review Only

	Descriptive statistics					Pearson Correlation Coefficients							
	Mean	Std. Dev	Median	IQR	03	O3 max	NO	со	PM10	PM25	SO2_mean	Temperature	RH
O ₃	20.46	8.80	20.00	13.50	1.00								
O₃ max	39.48	10.94	39.00	15.00	0.81	1.00							
NO ₂	17.90	8.95	18.33	12.33	-0.64	-0.32	1.00						
со	0.33	0.16	0.35	0.20	-0.54	-0.26	0.80	1.00					
PM ₁₀	21.94	12.78	20.00	16.00	-0.12	0.18	0.40	0.40	1.00				
PM ₂₅	9.79	5.91	7.00	6.17	-0.02	0.08	0.08	0.07	0.43	1.00			
SO ₂	1.78	1.29	1.00	1.00	-0.34	-0.15	0.53	0.63	0.24	0.07	1.00		
Temperature	4.43	10.20	5.08	14.89	0.41	0.49	-0.54	-0.29	0.16	0.31	-0.24	1.00	
RH	64.03	14.79	67.65	22.33	-0.36	-0.49	0.02	0.09	-0.23	0.02	-0.05	-0.31	1.0

Appendix 1: The distribution of air pollutants and their correlation to each other. Values for O3, NO2, CO, PM10, PM25, SO2, Temperature, and RH are 24-hour means. Values for ozone (O3 max) are daily maximum 8-hour average.