1	Relationship between Initial Treatment Strategy in Stable Coronary Artery Disease
2	and 1-Year Costs
3	
4	Short title: Stable angina and 1 year costs
5	
6	Jaskaran S Kang MD ¹ , Maria C Bennell MSc MPH ¹ , Feng Qiu MSc ² , Merril L
7	Knudtson MD ³ , Peter C Austin PhD ^{2,4} , Dennis T Ko MD MSc ^{1,2,4} , Harindra C
8	Wijeysundera MD PhD ^{1,2,4}
9	
10	Affiliations: ¹ Schulich Heart Centre, Division of Cardiology, Sunnybrook Health
11	Sciences Centre, University of Toronto, Ontario, Canada; ² Institute for Clinical
12	Evaluative Sciences (ICES), Ontario, Canada; ³ Libin Cardiovascular Institute,
13	University of Calgary, Calgary, Alberta; ⁴ Institute of Health Policy, Management and
14	Evaluation, University of Toronto, Ontario, Canada.
15	
16	Address for Correspondence:
17	Harindra C Wijeysundera
18	2075 Bayview Avenue, Suite A202
19	Toronto, Ontario M4N3M5
20	Tel: (416)480-4527 Fax: (416)480-4657
21	Email: harindra.wijeysundera@sunnybrook.ca
22 23	Word count: 2,266
24	

25	ABSTRACT
26	Background:
27	Cardiovascular disease is one of the most costly chronic diseases, with annual
28	expenditures projected to continue to increase. The relationship between initial treatment
29	strategy and cumulative costs is unknown. Our objective was to examine the variation in
80	patient-level costs and identify drivers of cost in patients with stable coronary artery
81	disease (CAD).
32	Methods:
3	In this retrospective cohort study using administrative databases in Ontario, Canada, we
34	identified all patients with stable coronary artery disease identified after index
5	angiography. We categorized hospitals into low, medium or high revascularization ratio
6	centers. The primary outcome was the cumulative 1-year health care costs. We used a
87	hierarchical generalized linear model to identify patient and hospital characteristics
8	associated with patient costs. Our model included two main co-variates of interest: (1) the
89	treatment allocation (medical vs. PCI vs. CABG) and (2) the hospital revascularization
40	ratio. The model was adjusted for patient, physician and hospital factors.
ł1	Results:
42	Our cohort consisted of 39,126 patients (15,138 medical therapy, 23,988 revascularized).
43	The mean 1-year cost was \$24,026 (range: \$54 to \$985,600). The mean cost for medical
14	management versus revascularization was \$18,069 and \$27,786 respectively. The
45	strongest predictor of 1-year costs was revascularization (PCI: RR 1.27, 95% CI 1.24-
46	1.31; CABG: RR 2.62, 95% CI 2.53-2.71). Hospital revascularization ratio did not

47 significant impact costs, and there was no significant interaction between treatment and

48 revascularization ratio.

Conclusions:

- 50 Revascularization is a major predictor of 1-year cumulative health care costs,
- 51 highlighting the resource utilization impact of decisions regarding initial treatment
- 52 strategy.

53 Key Words: Cardiac disease – coronary, Health economics

55 Introduction

Coronary artery disease (CAD) is a leading cause of morbidity and mortality,[1]
and as such represents a major economic burden on healthcare expenditures.[2] In 2005,
it was estimated that the cost of cardiovascular disease was \$20.9 billion in the United
States, with annual expenditures projected to triple by 2030.[1-3]

The treatment for stable CAD includes medical therapy alone or in combination with revascularization by either percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG). There is ongoing controversy as to the best initial treatment strategy despite numerous landmark trials, suggesting that the two treatment choices are equivalent in regards to death and major adverse cardiovascular events as well as symptom relief.[4-6] This debate has resulted in significant variation in clinical practice.[7] Understanding the potential impact of such practice variation on resource utilization is important. This is especially relevant given the current era of substantial budgetary constraints, where there is high priority for the efficient use of scarce health care resources. Indeed, recent guidelines from professional cardiovascular societies reinforce the importance of incorporating value and resource implications into health care decisions.[8]

Although there are studies examining the predictors of initial treatment strategy in patients with stable CAD, there is a paucity of literature on the impact of the different treatment strategies on health care costs. Accordingly, we sought to address this gap in knowledge by studying the cumulative 1-year health care costs in patients diagnosed with stable CAD after a coronary angiogram, using a population-based clinical registry of patients in Ontario, Canada. Ontario is Canada's largest province with approximately 14

78	million residents, all of whom receive universal health coverage, provided by a single 3 rd
79	party payer, the Ministry of Health and Long Term Care (MOHTLC). Our objectives
80	were to determine the degree of variation in health care costs, and understand the
81	predictors of cumulative healthcare costs. In particular, we were interested in the
82	relationship between initial treatment strategy (medical management versus
83	revascularization) as well as the impact of hospital revascularization ratio on subsequent
84	health care utilization.
85	
86	Methods
87	This study was approved by the institutional review board at Sunnybrook Health
88	Sciences Centre, Toronto, Canada. Under Ontario's Personal Health Information
89	Protection Act (PHIPA), the need for patient consent was waived.
90	Study Type
91	Observational cohort study
92	Setting
93	Our primary data source was the Cardiac Care Network (CCN) of Ontario.
94	CCN is comprised of 19 member hospitals that provide adult cardiac services, and
95	includes a clinical registry of patients who undergo cardiac angiography, PCI, or
96	CABG.[9,10] Its accuracy has been validated by retrospective chart review.[11,12] We
97	linked CCN data to population-level administrative databases using unique, encoded
98	identifiers and analyzed it at the Institute for Clinical Evaluative Sciences (ICES).[13-
99	16]
100	We used several administrative databases in our study. The Canadian Institute

59

60

2		
2 3 4	101	for Health Information Discharge Abstract Database (CIHI-DAD) contains data on all
5 6 7	102	hospitalizations. The CIHI-DAD includes a "most responsible" diagnosis and up to 24
7 8 9	103	additional diagnoses codes that can be used to estimate comorbidity. We used the
10 11	104	Ontario Registered Persons Database to ascertain death. We obtained data on
12 13	105	physician visits/consultation from the fee-for-service claims history in the Ontario
14 15 16	106	Health Insurance Program (OHIP) database, and the National Ambulatory Care
17 18	107	Reporting Service database for administrative, clinical, financial, and demographic
19 20	108	data for hospital-based ambulatory care, including emergency department visits,
21 22 23	109	outpatient surgical procedures, medical day/night care, and high-cost ambulatory
24 25	110	clinics such as dialysis, cardiac catheterization, and oncology. We obtained medication
26 27	111	information from the Ontario Drug Database, which has comprehensive drug
28 29 30	112	utilization information on patients over 65 years of age, for whom full drug coverage
31 32	113	is provided for by the Ontario Ministry of Health and Long Term Care of Ontario
33 34 25	114	(MOHLTC).
35 36 37	115	Patients
38 39	116	The cohort consisted of patients who received an angiogram between October
40 41 42	117	1 st 2008 and September 30 th 2011, for the indication of stable CAD, and had obstructive
43 44	118	coronary stenosis. During this period, there were only 18 CCN member hospitals. For
45 46	119	patients who received multiple angiograms during the study period, we considered only
47 48 49	120	the initial angiogram. Refer to Figure 1 for additional inclusion and exclusion criteria.
50 51	121	We allocated patients revascularized within 90 days of their index angiogram to the
52 53	122	revascularization strategy (and into PCI or CABG subgroups), as is consistent with the
54 55 56	123	literature and known procedural wait-times,[10,11] and all remaining patients to the
57 58 59		

6

medical therapy strategy. We categorized patients that received multiple angiograms
within this timeframe on the basis of the first procedure they received.

126 Revascularization to Medical Therapy Ratio

We calculated revascularization to medical therapy ratio (referred to herein as revascularization ratio), defined as the number of patients who were categorized as revascularization patients divided by the number of patients who underwent medical therapy. We then allocated the hospitals into one of three categories, high, medium, or low, based on equal tertiles of revascularization ratio.

Main Outcomes

The primary outcome was the total cumulative cost per patient in the one year following the index angiogram. Complete cost profiles were available for all patients for 1 year or until death. As such, we did not have to consider censored costs in our analyses. The categories of costs were all-cause physician visits and laboratory tests, acute care and chronic care hospitalizations, emergency department visits, same day surgeries, and CAD-related medication use for patients ≥ 65 years of age.[15,16] We determined costs associated with physician visits and laboratory tests using data from the claims history of the OHIP database.[14] The OHIP database also included shadow billings from providers of organizations covered by alternate payment arrangements. We estimated the cost of hospitalization using the Resource Intensity Weight (RIW) methodology.[16] We multiplied the RIW associated with the case-mix group for each hospitalization in the CIHI-DAD by the average provincial cost per weighted case for all Ontario acute and chronic care hospitals for that year.[16] This method yields a mean cost per hospitalization for cases assigned to a particular case-

	147	mix group category. We used a similar RIW methodology to determine the costs for
	148	emergency department visits and same day surgeries, both using the National
	149	Ambulatory Care Reporting Service database. We adjusted costs to 2013 Canadian
) I	150	dollars using the Consumer Price Index.
2 3	151	Statistical Analyses
+ 5 6	152	We used hierarchical generalized linear models, with a logarithmic link and
3	153	gamma distribution. The models incorporated hospital-specific random effects to account
))	154	for within-hospital homogeneity in outcomes. The logarithmic link function is
2 3	155	advantageous, as it restricts predicted costs to positive values. In addition, final model
1 5	156	coefficients are straightforward to interpret; specifically, the exponential of the
5 7 8	157	coefficient provides a rate ratio (RR), or the relative increase in the mean cost for a one
))	158	unit change in the predictor variable. We used the gamma distribution because of the
2	159	skewed distribution of health care costs.[17] Our models included 2 main co-variates of
3 1 5	160	interest: 1) the treatment allocation (medical vs PCI vs CABG) and 2) the
5 7	161	revascularization ratio (high vs medium vs low). In addition, the models included an
3	162	interaction between treatment allocation and revascularization ratio. We adjusted the
) 2	163	models for patient, physician and hospital factors, as listed in Table 1. We fit the
3 4	164	hierarchical generalized linear models using Proc GLIMMIX using SAS Version 9.3
5 5 7	165	(SAS Institute Inc., Cary, NC).
3	166	
)	167	Results
2 3 1	168	Patients
5		
7 }		

2		
3 4	169	Between October 1 st , 2008 and September 30 th , 2012, a total of 183,630
5 6 7	170	angiograms were performed in Ontario. The final cohort was compromised of 39,126
7 8 9	171	stable CAD patients, of which 15,138 were medically treated and 23,988 were treated
10 11	172	with revascularization (PCI: 15,601 patients, CABG: 8,387 patients; Figure 1). There
12 13	173	were substantial differences in the baseline characteristics between medical therapy and
14 15 16	174	revascularized groups (Table 1), with medically treated patients being older, more likely
17 18	175	to be female, having greater co-morbidity and less severe anginal symptoms based on
19 20	176	Canadian Cardiovascular Society (CCS) class.
21 22	177	Revascularization Ratio
23 24 25	178	The average revascularization ratio across the 18 Ontario hospitals was 1.58,
26 27	179	ranging from 1.09 to 2.31 (Appendix Figure 1).
28 29	180	Variation in Cumulative 1-Year Health Care Cost
30 31 32	181	Individual patient 1-year cost varied substantially, from a minimum of \$54 to a
33 34	182	maximum of \$985,600. As seen in Figure 2, the overall cost was heavily skewed, with an
35 36	183	overall median of \$15,707 and overall mean of \$24,026. The mean (and median) costs for
37 38 39	184	medical and revascularization treatments were \$18,069 (\$7,867) and \$27,786 (\$21,428)
40	104	incurcal and revascularization treatments were $$18,009$ ($$7,807$) and $$27,780$ ($$21,428$)
41 42	185	respectively. The mean cost by hospital ranged from \$19,749 to \$28,473.
43 44	186	Components of Health Care Costs
45 46 47	187	The majority of healthcare costs were due to acute care hospitalization with a
48 49	188	significantly higher cost for patients undergoing revascularization than patients managed
50 51	189	with medical therapy (Table 2). This was primarily driven by the cost of CABG.
52 53 54	190	Predictors of Health Care Costs
55		
56 57		

2		
3 4	191	The results of the fully adjusted model are found in Table 3. In so far as our 2
5 6 7	192	primary co-variates of interest, there was no significant difference in cost associated with
7 8 9	193	the hospital tertile revascularization ratio. In contrast, revascularization was a significant
10 11	194	predictor of mean cost regardless of the modality (PCI: RR 1.27, 95% CI 1.24-1.31;
12 13	195	CABG: RR 2.62, 95% CI 2.53-2.71; <i>P</i> <0.001 for both).
14 15 16	196	In addition, sex was a statistically significant predictor of mean cost, with a RR of
17 18	197	0.96 (95% CI 0.95-0.98) for males (P <0.001), indicating that the mean per-patient cost
19 20	198	was 4% less for males compared to females (Table 3). Peripheral vascular disease (RR
21 22 23	199	1.25, 95% CI 1.21-1.28, P<0.001), hypertension (RR 1.11, 95% CI 1.08-1.13, P<0.001),
24 25	200	and higher Charlson score (RR 1.17, 95% CI 1.16-1.17, P<0.001) were associated with
26 27 28	201	higher mean cost. Previous cardiac surgery was associated with a 17% reduction in mean
29 30	202	cost. Symptom severity, as measured by CCS class, had an impact on mean cost, with
31 32	203	more symptomatic patients, in general, having lower mean cost. The specialty of the
33 34 35	204	referral physician was a predictor of cost, with patients who were referred by either
36 37	205	cardiologists or other physicians having an increased 1-year cumulative cost compared to
38 39	206	those referred by their family physicians. In general, busier hospitals (as measured by
40 41 42	207	their annual cardiac catheterization volume) had lower cost, although the magnitude of
43 44	208	this effect was small.
45 46 47	209	In our interaction model (see Appendix Table 1), we were able to compare the
48 49	210	cost of each initial strategy, stratified by the type of hospital (low, medium or high
50 51	211	revascularization ratio). We found that, on average, there was no difference in cumulative
52 53 54	212	1-year health care cost for patients treated medically compared to those undergoing
55 56	213	revascularization at the different strata defined by the hospital revascularization ratio.

Similarly, patients treated initially by PCI had similar costs at high vs medium vs lowrevascularization hospitals, as did CABG patients.

217 Interpretation

In this study we found significant variation in the 1-year cumulative health care costs among stable CAD patients treated at different hospitals. Patients with greater co-morbidity had higher cost, as did patients treated with either type of revascularization. Our analysis suggests that the majority of the variation in cost was attributable to the differences in treatment strategy. Importantly, the variation observed between-hospitals based on revascularization ratio was not associated with a statistically significant difference in cumulative health care costs, regardless of the management strategy. To the best of our knowledge, ours is the first study to evaluate cumulative health care costs associated with differing initial treatment strategies among stable CAD patients in over a decade and the first to look at the drivers of these costs. It has previously been reported that the direct cost of stable CAD accounted for 1.3 % of the UK national health expenditures.[18] The vast majority of this cost was related to revascularization procedures (35% of cost) and hospital bed occupancy (31% of cost). Additionally, drug treatment accounted for 12% of total expenditures. Similar findings were found in several other UK and European studies.[19,20]

In our study, the major driver for 1-year cumulative costs was the receipt of revascularization. If revascularization offers no impact on mortality and if symptom relief is equivocal, as previous RCTs have shown, then our study suggests that the decision to pursue a revascularization strategy will translate into a substantial impact on healthcare

resources. It follows that revascularization in patients with minimal symptoms in whom clinical benefit may be marginal may concurrently place an important financial burden on the healthcare system. This reinforces the importance of appropriate selection of patients who should receive PCI or CABG. Interestingly, the cumulative cost for each of the treatment strategies did not vary with hospital revascularization ratio -i.e. the cost of a strategy was similar regardless of the sites tendencies to favor revascularization or medical management. This implies a similar degree of efficiency for hospitals at different revascularization strata, which is a reassuring finding.

Our findings should be interpreted in the context of several limitations that merit discussion. First, we were limited to administrative databases, and thus do not have information on several important factors, such as intensity of medical optimization that may influence cost. Second, we were unable to calculate the indirect costs, such as productivity losses, which has been reported to account upwards to 75% of the total cost of CAD.[19] Third, based on our allocation of treatment strategy, there is a risk of survivorship bias, in that patients who died within 90 days were allocated to the medical therapy group and thus have lower costs. This risk is mitigated by the fact that our cohort was a stable CAD population with very low mortality – indeed, our previous work showed a 90 day mortality that was <1% [21] Finally, we limited our analyses to health care costs over a restricted 1 year time-horizon in a cohort of patients post coronary angiography. As such, our results cannot be generalized to stable CAD patients who have not undergone angiography.

In conclusion, the majority of costs associated with stable CAD are due to acute care hospitalization, with the primary driver being revascularization. Our study highlights the resource implications of an initial revascularization strategy. ACKNOWLEDGMENTS None FUNDING The clinical registry data used in this publication are from the CCN and its member hospitals. The CCN is dedicated to improving the quality, efficiency, access and equity of adult cardiovascular services in Ontario, Canada. The CCN is funded by the MOHLTC. This study was funded in part by operating funds from Canadian Institute of Health Research (CIHR), Schulich Heart Center and the Sunnybrook Research Institute. This study was supported by the Institute for Clinical Evaluative Sciences (ICES), which is funded by an annual grant from the MOHLTC. The opinions, results and conclusions reported in this paper are those of the authors and are independent from the funding sources. No endorsement by ICES or the MOHLTC is intended or should be inferred. Parts of this material are based on data and information compiled and provided by CIHI. However, the analyses, conclusions, opinions and statements expressed herein are those of the author, and not necessarily those of CIHI. Dr H. Wijeysundera is supported by a Distinguished Clinical Scientist Award from the Heart and Stroke Foundation of Canada. Dr. Ko is supported by a Clinician Scientist Phase II personnel award from the Heart and Stroke Foundation, Ontario Provincial Office. Dr. Austin is supported in part by a Career

For Peer Review Only

1 2		
3 4	281	Investigator Award from the Heart and Stroke Foundation. Dr. Wijeysundera had full
5 6 7	282	access to all of the data in the study and takes responsibility for the integrity of the data
7 8 9	283	and accuracy of the data analysis.
10 11	284	
12 13 14	285	CONFLICTS
15 16	286	The authors do not have any potential conflicts of interest or industry relationships to
17 18	287	disclose.
19 20 21	288	
22 23		
24 25		
26 27 28		
29 30		
31 32		
33 34		
35 36		
37 38 39		
40 41		
42 43		
44 45		
46 47		
48 49 50		
50 51 52		
53 54		
55 56		
57 58		
59 60		

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

289 References

For Peer Review Only

1. Thériault L, Stonebridge C, Browarski S, Conference Board of Canada, Canadian

Heart Health Strategy and Action Plan, Heart and Stroke Foundation of Canada,

et al. The Canadian heart health strategy: risk factors and future cost implications.

2. Public Health Agency of Canada. Economic Burden of Illness in Canada, 2005-2008.

Ottawa: Her Majesty the Queen in Right of Canada; 2014. Report No.: 130148.

of the cost of cardiovascular disease. Canadian Journal of Cardiology.

3. Tarride JE, Lim M, DesMeules M, Luo W, Burke N, O'Reilly D, et al. A review

4. Simoons ML, Windecker S. Controversies in cardiovascular medicine: chronic

stable coronary artery disease: drugs vs. revascularization. European Heart

5. Boden WE, O'Rourke RA, Teo KK, Maron DJ, Hartigan PM, Sedlis SP, et al.

Impact of optimal medical therapy with or without percutaneous coronary

intervention on long-term cardiovascular end points in patients with stable

coronary artery disease (from the COURAGE Trial). American Journal of

6. Bari D. Study Group. A randomized trial of therapies for type 2 diabetes and

coronary artery disease. New England Journal of Medicine. 2009;360(24): 2503-

7. Bennell MC, Qiu F, Austin PC, Wijeysundera HC. Determinants of variations in

initial treatment strategies for stable ischemic heart disease. Canadian Medical

Conference Board of Canada; 2010.

2009;25(6):e195-202.

Journal. 2010;31(5):530-41.

Cardiology. 2009;104(1): 1-4.

Association Journal. 2015;187(10):e317-25.

15.

1		
2 3 4	313	8. Anderson J, Heidenreich PA, Barnett PG; Creager MA, Fonarow GC, Gibbons,
5 6	314	RJ, et al. ACC/AHA statement on cost/value methodology in clinical practice
7 8 9	315	guidelines and performance measures. Journal of the American College of
10 11	316	Cardiology. 2014;63(21):2304-2322.
12 13 14	317	9. Cardiac Care Network of Ontario [Internet]. Toronto: Cardiac Care Network of
14 15 16	318	Ontario [updated 2011; cited 2015 Dec 1]. Available from:
17 18	319	http://www.ccn.on.ca/ccn_public/FormsHome/HomePage.aspx
19 20 21	320	10. Cardiac Care Network of Ontario. Cardiac Care Network Annual Report 2001-
22 23	321	2012. Toronto: Cardiac Care Network of Ontario; 2012.
24 25	322	11. Ko DT, Guo H, Wijeysundera HC, Natarajan MK, Naqpal AD, Feindel CM, et al.
26 27 28	323	Assessing the association of appropriateness of coronary revascularization and
29 30	324	clinical outcomes for patients with stable coronary artery disease. Journal of the
31 32	325	American College of Cardiology. 2012;60(19):1876-84.
33 34 35	326	12. Schwalm, JR, Wijeysundera, HC, Tu, JV, Guo H, Kingsbury KJ, Natarajan MK.
36 37	327	Influence of coronary anatomy and SYNTAX Score on the variations in
38 39 40	328	revascularization strategies for patients with multivessel disease. Canadian
40 41 42	329	Journal of Cardiology. 2014;30(10):1153-4.
43 44	330	13. Tu JV, Ko DT, Guo H, Richards JA, Walton N, Natarajan MK, et al.
45 46 47	331	Determinants of variations in coronary revascularization practices. Canadian
48 49	332	Medical Association Journal. 2012;184(2):179-86.
50 51	333	14. Gurevich Y, McFarlane A, Morris K, Jokovic A, Peterson GM, Webster GK.
52 53 54	334	Estimating the number of coronary artery bypass graft and percutaneous coronary
55 56	335	intervention procedures in Canada: A comparison of cardiac registry and
57 58		
59 60		16

1		
2 3 4	336	Canadian Institute for Health Information data sources. Canadian Journal of
5 6 7	337	Cardiology. 2010;26(7): e249-53.
7 8 9	338	15. Wijeysundera HC, Wang X, Tomlinson G, Ko DT, Krahn MD. Techniques for
10 11	339	estimating health care costs with censored data: an overview for the health
12 13	340	services researcher. ClinicoEconomics Outcomes and Research. 2012;4:145–155.
14 15 16	341	16. Jacobs P, Yim R. Using Canadian administrative databases to derive economic
17 18	342	data for health technology assessments. Ottawa: Canadian Agency for Drugs and
19 20	343	Technologies in Health; 2009.
21 22 23	344	17. Austin PC, Ghali WA, Tu JV. A Comparison of Several Regression Models for
24 25	345	Analysing Costs of CABG Surgery. Statistics in Medicine. 2003;22(17):2799-
26 27	346	2815.
28 29 30	347	18. Stewart S, Murphy NF, Walker A, McGuire A, McMurray JJ. The current cost of
31 32	348	angina pectoris to the National Health Service in the UK. Heart. 2003;89(8):848-
33 34 35	349	53.
36 37	350	19. Liu JLY, Maniadakis N, Gray A, Rayner M. The economic burden of coronary
38 39	351	heart disease in the UK. Heart. 2002;88(6):597–603.
40 41 42	352	20. Leal J, Luengo-Fernández R, Gray A, Petersen S, Rayner M. Economic burden of
43 44	353	cardiovascular diseases in the enlarged European Union. European Heart Journal.
45 46	354	2006;27(13):1610–9.
47 48 49	355	21. Wijeysundera HC, Bennell MC, Qiu F, Ko DT, Tu JV, Wijeysundera DN, et al.
50 51	356	Comparative-effectiveness of revascularization versus routine medical therapy for
52 53	357	stable ischemic heart disease: a population-based study. Journal of General
54 55 56	358	Internal Medicine. 2014;29(7):1031-9.
57 58		
59 60		17

1 2		
2 3 4	359	FIGURE LEGENDS
2 3 4 5 6 7	360	Figure 1. Study population
7 8 9	361	Figure 2. Variation in individual and hospital level costs
10 11 12		
13 14		
15 16 17		
18 19		
20 21 22		
23 24 25		
26 27		
28 29 30		
31 32		
33 34 35		
36 37		
38 39 40		
41 42 43		
44 45		
46 47 48		
49 50		
51 52 53		
54 55		
56 57 58		
59 60		

Cost category	Total cost	Medical	Revascularization	p-value
Acute care hospitalization	\$11,373	\$7,038	\$14,109	< 0.001
ER	\$372	\$367	\$375	0.262
Surgery	\$2,691	\$2,090	\$3,071	< 0.001
Physician visits	\$5,449	\$4,079	\$6,313	< 0.001
Medication*	\$1,810	\$1,857	\$1,780	0.004
Laboratory	\$194	\$195	\$193	0.326
Long term care	\$54	\$93	\$29	< 0.001

Table 2. Components of 1-year mean costs

ER = emergency room

* For patients over 65 years of age

CABG	PCI	p-value
\$25,927	\$7,755	< 0.001
\$403	\$361	< 0.001
\$1,901	\$3,699	< 0.001
\$10,086	\$4,284	< 0.001
\$1,476	\$1,944	< 0.001
\$217	\$180	< 0.001
\$47	\$19	< 0.001

Tuesting and		p-value
Treatment		
Medical management	referent	
PCI	1.27 (1.24-1.31)	< 0.001
CABG	2.62 (2.53-2.71)	< 0.001
Hospital		
revascularization ratio		
Low	referent	
Medium	1.03 (0.93-1.15)	0.560
High	1.08 (0.97-1.21)	0.130
Patient-level factors		
Demographics		
Age, yrs	1.01 (1.01-1.01)	< 0.001
Male gender	0.96 (0.95-0.98)	< 0.001
Rural	0.97 (0.95-0.99)	< 0.001
Income*		
5	referent	
1	1.10 (1.07-1.12)	< 0.001
2	1.04 (1.02-1.07)	< 0.001
3	1.02 (1.00-1.05)	0.072
4	1.02 (1.00-1.05)	0.036
Medical comorbidities		
PVD	1.25 (1.21-1.28)	< 0.001
Previous MI	0.95 (0.93-0.97)	< 0.001
COPD	1.10 (1.07-1.13)	< 0.001
Charlson score	1.17 (1.16-1.17)	< 0.001
Cardiac risk factors		
Diabetes	1.00 (0.99-1.02)	0.640
Hypertension	1.11 (1.08-1.13)	< 0.001
Hyperlipidemia	0.95 (0.93-0.97)	< 0.001
History smoking	1.00 (0.99-1.02)	0.930
Cardiac status/testing		
Native stenosis ⁺		
LM	1.12 (1.09-1.15)	< 0.001
Prox LAD	1.10 (1.08-1.11)	< 0.001
Mid/distal LAD	1.08 (1.06-1.09)	< 0.001
Circumflex	1.11 (1.09-1.12)	< 0.001
RCA	1.09 (1.07-1.11)	< 0.001
Previous CABG	0.83 (0.82-0.85)	< 0.001

For Peer Review Only

≥50%	referent	
35-49%	1.03 (1.00-1.05)	0.020
≤34%	1.14 (1.10-1.18)	< 0.001
NA	0.95 (0.93-0.97)	< 0.001
Exercise ECG risk		
Low risk	referent	
High risk	1.04 (1.02-1.06)	0.003
Uninterpretable	1.09 (1.05-1.14)	< 0.001
NA	1.24 (1.21-1.27)	< 0.001
Functional imaging risk		
Low risk	referent	
High risk	1.01 (0.99-1.03)	0.280
Unknown/NA	1.05 (1.03-1.08)	< 0.001
CCS class		
0	referent	
1	0.90 (0.87-0.92)	< 0.001
2	0.88 (0.85-0.90)	< 0.001
3	0.90 (0.88-0.92)	< 0.001
4	0.86 (0.82-0.90)	<0.001
Physician factors		
Referral physician		
Family physician	referent	
Cardiology	1.02 (1.01-1.05)	0.005
Internal medicine	1.00 (0.98-1.03)	0.680
Other	1.22 (1.19-1.27)	< 0.001
Missing	1.03 (1.00-1.05)	0.023
Hospital factors		
	0.99 (0.99-0.99)	< 0.001
CABG= coronary artery		catheterization, CI = confidence
COPD = chronic obstruc	tive pulmonary disease,	ECG = electrocardiogram,
LAD = left anterior desc	ending, LM = left main,	LV = left ventricular, MI = m
NA implies not done or n	pissing PCI = percutane	ous coronary intervention,

LAD = left anterior descending, LM = left main, LV = left ventricular, MI = myocardial infarction, NA implies not done or missing, PCI = percutaneous coronary intervention,

PVD = peripheral vascular disease, RCA = right coronary artery, RR= rate ratio.

* Income quintile: 1=lowest, 5 = highest.

+LM if \geq 50% stenosis, Prox LAD if \geq 70% stenosis, Mid/distal LAD if \geq 70% stenosis,

Circumflex if \geq 70% stenosis, RCA if \geq 70% stenosis.

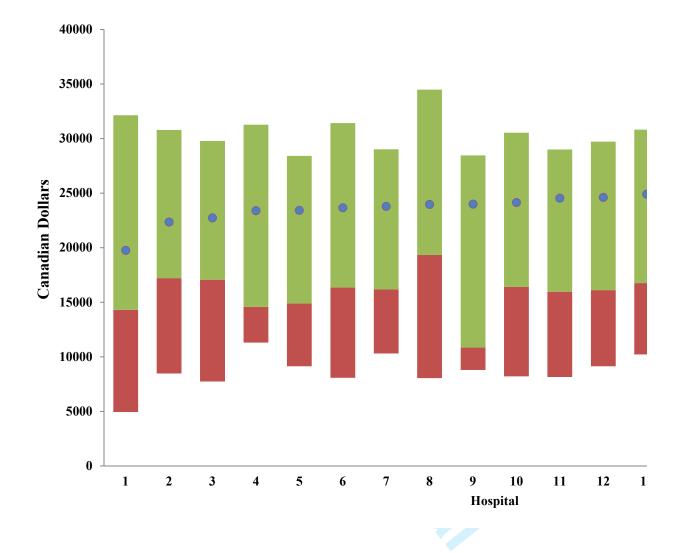
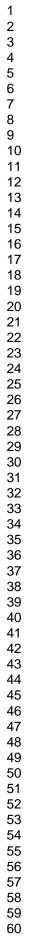
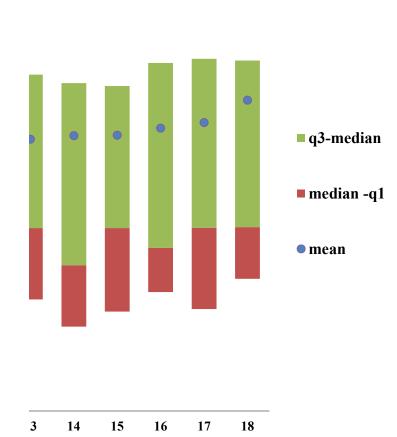
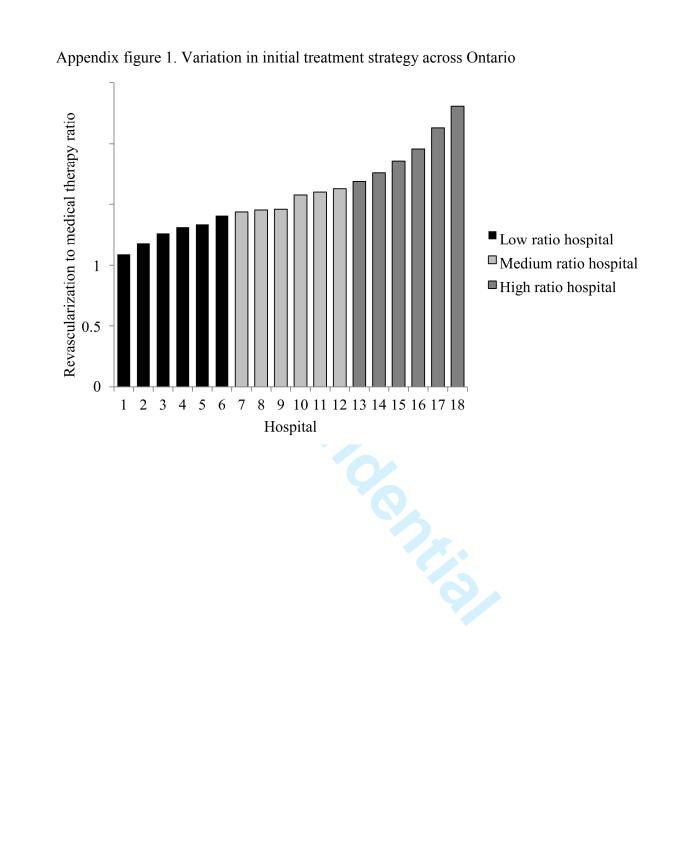




Figure 2. Variation in individual and hospital level costs


For Peer Review Only

Covariates	RR (95% CI)	p-value	
Treatment:			
Medical management:			
High vs. low	1.08 (0.98-1.20)	0.127	
Medium vs. low	1.03 (0.93-1.13)	0.562	
High vs. medium	1.05 (0.95-1.16)	0.318	
PCI:			
High vs. low treatment	1.04 (0.94-1.15)	0.415	
Medium vs. low treatment	1.06 (0.96-1.17)	0.237	
High vs. medium treatment	0.98 (0.89-1.08)	0.719	
CABG:			
High vs. low	1.00 (0.90-1.10)	0.964	
Medium vs. low	1.00 (0.91-1.11)	0.929	
High vs. medium	0.99 (0.90-1.10)	0.893	

Appendix table 1. Predictors of 1-year cumulative health care costs*

CABG = coronary artery bypass graft, CI = confidence interval, PCI = percutaneous coronary intervention, RR= rate ratio. *Fully adjusted model for patient characteristics

Page 27 of 26

